Processing math: 100%

Friday, 2 May 2025

On This Day in Math - May 2

   



We call a thing big or little
with reference to what it is wont to be, 
as we speak of a small elephant
or a big rat.


D'Arcy Thompson, "On Growth and Form"


The 122nd day of the year; there are 122 different ways to partition the number 24 into distinct parts.  Euler showed that this is the same as the number of ways to partition a number into odd parts.

122 ends in the digit two when written in base 3, 4, 5, 6, 8, 10, 12, 15, and 20.  How unusual is that?


122 squared minus each of its prime factors squared is also prime
and 122 is the smallest sum of two non-consecutive factorials of distinct primes (2! + 5!) *Prime Curios

Not sure how unusual this is, but there are no twin primes between 121^2 and 122^2?  There is no larger number which has this property.

122 Added to its reverse (221) it gives a palindrome cube (343 = 73).

*ExpertSays  Also 122² is the only known sum for power 4 and 5 122² =11⁴+3⁵




EVENTS


On May 2  in 1736, an expedition set out from Dunkirk to travel to Lapland to measure the length of a degree along the meridian. It was headed by Maupertuis and included the scientists Clairaut and Camus.



================================================

1775 Benjamin Franklin completed the first scientific study of the Gulf Stream. His observations began in 1769 when as deputy postmaster of the British Colonies he found ships took two weeks longer to bring mail from England than was required in the opposite direction. Thus, Franklin became the first to chart the Gulf Stream.He described the Gulf Stream as a river of warm water and mapped it as flowing north from the West Indies, along the East Coast of North America and east across the Atlantic Ocean to Europe. *TIS

In 1800, English chemist William Nicholson was the first to produce a chemical reaction by electricity. He had been working with Anthony Carlisle, a London surgeon, experimenting with Allesandro Volta's voltaic pile. The new effect was discovered when wires from the poles of the battery being used came into contact with water and bubbles of gas were released as current flowed through the water. Closer examination of the electrolysis showed oxygen was released at the (positive) anode, and hydrogen appeared at the cathode. Electricity had separated the molecules of water. Further, the effect of the amount of hydrogen and oxygen set free by the current was proportional to the amount of current used.*TIS
In 1785 a Dutch scientist named Martin van Marum had created an electrostatic generator that he used to reduce tin, zinc and antimony from their salts using a process later known as electrolysis. Though he unknowingly produced electrolysis, it was not until 1800 when William Nicholson and Anthony Carlisle discovered how electrolysis works.
The word "electrolysis" was introduced by Michael Faraday in 1834, using the Greek words ἤλεκτρον [ɛ̌ːlektron] "amber", which since the 17th century was associated with electrical phenomena, and λύσις [lýsis] meaning "dissolution". Nevertheless, electrolysis, as a tool to study chemical reactions and obtain pure elements, precedes the coinage of the term and formal description by Faraday.*Wik

*Wik



1880 The first commercial order of an Edison Lighting system was installed on the newly launched Steamship Columbia. The dynamo and lights were installed by Edison Engineers and first lighting was on May 2, 1880. The event was featured in the May issue of Scientific American. John Roach and Sons had built the ship in their Chester, Pennsylvania ship works and launched it on Feb 24, 1880. *The History of the American Bureau of Shipping.



In his letter to Science dated May 2, 1889, which was quite brief, FitzGerald proposed that the best way to explain the null result of the Michelson-Morley experiment was to assume that the length of an object was not a constant, but that objects moving through the ether with a velocity v were contracted by a factor of v^2/c^2, where c is the speed of light. *Linda Hall Org
George Francis FitzGerald was an Irish physicist,*PBnotes

*Linda Hall Org


====================================================
1983 Microsoft Introduces 2-button Mouse:
Microsoft Corp. announced the two-button Microsoft Mouse, which it introduced to go along with its new Microsoft Word processor. Microsoft built about 100,000 of these fairly primitive units for use with IBM and IBM-compatible personal computers but sold only 5,000 before finding success in a 1985 version that featured, among other improvements, near-silent operation on all surfaces.*CHM
In ensuing years, as mice made their way to personal computers, there was something of a battle waged between proponents of 2-button and 3-button mice, with Logitech favoring the 3-button variety.
 The mouse featured two green buttons and is available by itself or will later be bundled with the new Microsoft Word software, which Microsoft would release in September. Because of the green buttons, the mouse was nicknamed the “Green-Eyed Mouse”, which may have been a fitting name given it’s similarity to the Shakesperian phrase “green-eyed monster” to describe jealously. It was no secret Bill Gates was very envious of what Apple was creating with the Lisa and later Macintosh computers and their mouse-driven interfaces. Microsoft will manufacture nearly one hundred thousand units of their first mouse, but will only sell five thousand before introducing a second, more popular version in 1985.

Microsoft would go on to create a very successful line of mice and other computing peripherals over the years, but almost ironically Microsoft announced in April of 2023, nearly 40 years later, that they would end the production of Microsoft-branded peripherals and focus on their Surface-branded peripherals. This came months after Microsoft announced a 30% year-over-year drop in revenue from devices, cut 10,000 jobs, and announced “changes to their hardware portfolio”. *This Day in Tech History





BIRTHS

1588 Etienne Pascal (Clermont, May 2, 1588 - Paris, September 24, 1651), for whom the limacon of Pascal was named. He was the father of Blaise Pascal. The limacon was named by another Frenchman Gilles-Personne Roberval in 1650 when he used it as an example of his methods of drawing tangents
i.e. differentiation.
The name "limacon" comes from the Latin limax meaning 'a snail'. Étienne Pascal corresponded with Mersenne whose house was a meeting place for famous geometers including Roberval.
Dürer should really be given the credit for discovering the curve since he gave a method for drawing the limacon, although he did not call it a limacon, in Underweysung der Messungpublished in 1525. *SAU [Etienne Pascal was one of the "nine lovers of literature established a regular meeting. In 1635, Richelieu organized them into an Académie Libre or ACADÉMIE FRANÇAISE." This was the forerunner of the ACADÉMIE DES SCIENCES. pb]
The term limacon is derived from the Latin word for a snail. The name is also used for the spiral cavity of the inner ear, the cochlea.


1601 Athanasius Kircher (2 May 1601; 28 Nov 1680 at age 79) German Jesuit priest and scholar, sometimes called the last Renaissance man. Kircher's prodigious research activity spanned a variety of disciplines including geography, astronomy, physics, mathematics, language, medicine, and music. He made an early, though unsuccessful attempt to decipher hieroglyphics of the Coptic language. During the pursuit of experimental knowledge, he once had himself lowered into the crater of Vesuvius to observe its features soon after an eruption. He made one of the first natural history collections. Kircher studied animal luminescence, writing two chapters of his book Ars Magna Lucis et Umbrae to bioluminescence, and debunked the idea that that an extract made from fireflies could be used to light houses.*TIS

from his 1665 book (Mundus Subterraneus)
*Linda Hall Org 


1773 Henrik Steffens (2 May 1773–13 February 1845), was a Norwegian-born Danish philosopher, scientist, and poet. He was one of the so-called "Philosophers of Nature", a friend and adherent of Schelling and of Schleiermacher. More than either of these two thinkers he was acquainted with the discoveries of modern science, and was thus able to correct or modify the highly imaginative speculations of Schelling. He held that, throughout the scheme of nature and intellectual life, the main principle is Individualisation. As organisms rise higher in the scale of development, the sharper and more distinct become their outlines, the more definite their individualities. This principle he endeavoured to deduce from his knowledge of geology, in contrast to Lorenz Oken, who developed the same theory on biological grounds. His influence was considerable, and both Schelling and Schleiermacher modified their theories in deference to his scientific deductions.*Wik



1860 Sir D'Arcy Wentworth Thompson (2 May 1860; 21 Jun 1948 at age 88)
Scottish zoologist and classical scholar, who is noted for his influential work On Growth and Form (1917, new ed. 1942). It is a profound consideration of the shapes of living things, starting from the simple premise that “everything is the way it is because it got that way.” Hence one must study not only finished forms, but also the forces that moulded them: “the form of an object is a ‘diagram of forces’, in this sense, at least, that from it we can judge of or deduce the forces that are acting or have acted upon it.”' One of his great themes is the tremendous light cast on living things by using mathematics to describe their shapes and fairly simple physics and chemistry to explain them..*TIS
He graduated from Cambridge University in Zoology and was appointed Professor of Biology at Dundee and later Professor of Natural History at St Andrews. He combined skills in a way that made him unique. He was a Greek scholar, a naturalist and a mathematician. He was the first biomathematician. He became an honorary member of the EMS in 1933.*SAU [The University of Dundee and the University of St Andrews joined to host a celebration of Thompson's sesquicentennial birth year (2010) with a series of events. They have a photo gallery still available at the time of this writing. ]
He was the first biomathematician. His book On Growth and Form had a great influence on both biologists and mathematicians.

Graphical deformation producing an assortment of crab carapaces, left, and two copepods, right, from Thompson, On Growth and Form, 1945 (Linda Hall Library)
Royal Society of Edinburgh portrait



*MacTutor



1868 Robert W. Wood (2 May 1868; 11 Aug 1955 at age 87) was an American physicist who photographed the reflection of sound waves in air, and investigated the physiological effects of high-frequency sound waves. The zone plate he devised could replace the objective lens of a telescope. He invented an improved diffraction grating, did research in spectroscopy, and extended the technique of Raman spectroscopy (a method to study matter using the light scattered by it.) He made photographs showing both infrared and ultraviolet radiation and was the first to photograph ultraviolet fluorescence. Wood was the first to observe the phenomenon of field emission in which charged particles are emitted from conductors in an electric field. *TIS
According to a post at Greg Ross' Futility Closet:
"How to clean a 40-foot spectrograph, from R.W. Wood’s Researches in Physical Optics, 1913:
The long tube was made by nailing eight-inch boards together, and was painted black on the inside. Some trouble was given by spiders, which built their webs at intervals along the tube, a difficulty which I surmounted by sending our pussy-cat through it, subsequently destroying the spiders with poisonous fumes.
This was the least of Wood’s exploits. Walter Bruno Gratzer, in Eurekas and Euphorias, writes that the physicist “would alarm the citizens of Baltimore by spitting into puddles on wet days, while surreptitiously dropping in a lump of metallic sodium, which would explode in a jet of yellow flame.”

Wood also proposed and built a reflection telescope with the parabolic mirror formed by the surface of a rotating pool of mercury and debunked the "N-rays" mistakenly "discovered" by Blondlot.  HT to Alexandre Zagoskin

 


 



1901 Edouard Zeckendorf
 (2 May 1901 - 16 May 1983) was a Belgian doctor, army officer and mathematician. In mathematics, he is best known for his work on Fibonacci numbers and in particular for proving Zeckendorf's theorem. Zeckendorf's theorem states that every positive integer can be represented uniquely as the sum of one or more distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers.
Zeckendorf was born in Liège in 1901. He was the son of a Dutch dentist. In 1925, Zeckendorf graduated as a medical doctor from the University of Liège and joined the Belgian Army medical corps. When Germany invaded Belgium in 1940, Zeckendorf was taken prisoner and remained a prisoner of war until 1945. During this period, he provided medical care to other allied POWs. *Wik



1921 Walter Rudin (May 2, 1921 – May 20, 2010) was an Austrian-American mathematician and professor of Mathematics at the University of Wisconsin–Madison. 

In addition to his contributions to complex and harmonic analysis, Rudin was known for his mathematical analysis textbooks: Principles of Mathematical Analysis, Real and Complex Analysis, and Functional Analysis. Rudin wrote Principles of Mathematical Analysis only two years after obtaining his Ph.D. from Duke University, while he was a C. L. E. Moore Instructor at MIT. Principles, acclaimed for its elegance and clarity, has since become a standard textbook for introductory real analysis courses in the United States.

Rudin's analysis textbooks have also been influential in mathematical education worldwide, having been translated into 13 languages, including Russian, Chinese, and Spanish

They are so common and long lived on Campuses that they have their own nicknames; "Baby Rudin" is used for his  Principles of Mathematical Analysis, an undergraduate text.   "Big Rudin" is  for his Real and Complex Analysis, a graduate level text.

In 1970 Rudin was an Invited Speaker at the International Congress of Mathematicians in Nice. He was awarded the Leroy P. Steele Prize for Mathematical Exposition in 1993 for authorship of the now classic analysis texts, Principles of Mathematical Analysis and Real and Complex Analysis. He received an honorary degree from the University of Vienna in 2006.

In 1953, he married fellow mathematician Mary Ellen Estill, known for her work in set-theoretic topology.  She was appointed as Professor of Mathematics at the University of Wisconsin in 1971.  The two resided in Madison, Wisconsin, in the eponymous Walter Rudin House, a home designed by architect Frank Lloyd Wright. They had four children. *Wik








1928 Jacques-Louis Lions (2 May 1928 in Grasse, Alpes-Maritimes, France - 17 May 2001 in Paris, France) French mathematician who made contributions to the theory of partial differential equations and to stochastic control, among other areas. He received the SIAM's John Von Neumann prize in 1986. *Wik



1939 Sumio Iijima (May 2, 1939, )is a Japanese physicist, often cited as the discoverer of carbon nanotubes. Although carbon nanotubes had been observed prior to his "discovery"1, Iijima's 1991 paper generated unprecedented interest in the carbon nanostructures and has since fueled intense research in the area of nanotechnology. For this and other work Sumio Iijima was awarded, together with Louis Brus, the inaugural Kavli Prize for Nanoscience in 2008. *Wik (Quotes of Sumio Iijma by Arjen Dijksman)




DEATHS

1519 Leonardo da Vinci (15 Apr 1452, 2 May 1519 at age 67) Italian painter, draftsman, sculptor, architect, and engineer. Da Vinci was a great engineer and inventor who designed buildings, bridges, canals, forts and war machines. He kept huge notebooks sketching his ideas. Among these, he was fascinated by birds and flying and his sketches include such fantastic designs as flying machines. These drawings demonstrate a genius for mechanical invention and insight into scientific inquiry, truly centuries ahead of their time. His greater fame lies in being one of the greatest painters of all times, best known for such paintings as the Mona Lisa and The Last Supper.*TIS







1925 Johann Palisa (6 Dec 1848, 2 May 1925 at age 76)Austrian astronomer who was a prolific discoverer of asteroids, 122 in all, beginning with Asteroid 136 Austria (on 18 Mar 1874, using a 6" refractor) to Asteroid 1073 Gellivara in 1923 - all by visual observation, without the aid of photography. In 1883, he joined the expedition of the French academy to observe the total solar eclipse on May 6 of that year. During the eclipse, he searched for the putative planet Vulcan, which was supposed to circle the sun within the orbit of Mercury. In addition to observing the eclipse, Palisa collected insects for the Natural History Museum in Vienna. He also prepared two catalogs containing the positions of almost 4,700 stars. He remains the most successful visual discoverer in the history of minor planet research.*TIS



1967 Robert Daniel Carmichael (1 March 1879 in Goodwater, Coosa County, Alabama, USA - 2 May 1967 in Merriam, Northeast Johnson County, Kansas, USA) Carmichael is known for his mathematical research in what are now called the Carmichael numbers (numbers satisfying properties of primes described by Fermat's Little Theorem although they are not primes- see below), Carmichael's theorem, and the Carmichael function, all significant in number theory and in the study of the prime numbers. Carmichael might have been the first to describe the Steiner system S(5,8,24), a structure often attributed to Ernst Witt. While at Indiana University Carmichael was involved with special theory of relativity. *Wik Fermat had proved that if n is prime then x^n-1 = 1 mod n for every x coprime to n. A 'Carmichael number' is a non-prime n satisfying this condition for any x coprime to n. It was given this name since Carmichael discovered the first such number, 561, in 1910 (there are several base ten Carmichael numbers below 561 for the interested student to search for). For many years it was an open problem as to whether there were infinitely many Carmichael numbers, but this was settled in 1994 by W R Alford, A Granville, and C Pomerance in their paper There are infinitely many Carmichael numbers. *SAU



1981 David Wechsler (12 Jan 1896, 2 May 1981 at age 85) U.S. psychologist and inventor of several widely used intelligence tests for adults and children. During WW I, while assisting Edwin Garrigues Boring (1886-1968) in testing army recruits, Wechsler realized the inadequacies of the Army Alpha Tests (designed to measure abilities of conscripts and match them to suitable military jobs). He concluded that academically defined "intelligence" did not apply to "real life" situations. After leaving the military and more years of research, he developed the Wechsler Adult Intelligence Scale, and introduced deviation scores in intelligence tests. He developed the Wechsler Memory Scale in 1945, Wechsler Intelligence Scale for Children (1949), and Wechsler Preschool and Primary Scale of Intelligence (1967). *TIS



1982 Salomon Bochner (20 Aug 1899, 2 May 1982 at age 82) Galician-born American mathematician and educator responsible for the development of the Bochner theorem of positive-definite functions and the Bochner integral.*TIS
In 1925 he started work in the area of almost periodic functions, simplifying the approach of Harald Bohr by use of compactness and approximate identity arguments. In 1933 he defined the Bochner integral, as it is now called, for vector-valued functions. Bochner's theorem on Fourier transforms appeared in a 1932 book. His techniques came into their own as Pontryagin duality and then the representation theory of locally compact groups developed in the following years.
Subsequently he worked on multiple Fourier series, posing the question of the Bochner–Riesz means. This led to results on how the Fourier transform on Euclidean space behaves under rotations.
In differential geometry, Bochner's formula on curvature from 1946 was most influential. Joint work with Kentaro Yano (1912–1993) led to the 1953 book Curvature and Betti Numbers. It had broad consequences, for the Kodaira vanishing theory, representation theory, and spin manifolds.*WIK

For a torus, the first Betti number is b1 = 2 , which can be intuitively thought of as the number of circular "holes"







2004 John Hammersley (21 March 1920-2 May 2004) British mathematician best-known for his foundational work in the theory of self-avoiding walks and percolation theory. *Wik when introduced to guests at Trinity College, Oxford, he would say he did difficult sums". He believed passionately in the importance of mathematics with strong links to real-life situations, and in a system of mathematical education in which the solution of problems takes precedence over the generation of theory. He will be remembered for his work on percolation theory, subadditive stochastic processes, self-avoiding walks, and Monte Carlo methods, and, by those who knew him, for his intellectual integrity and his ability to inspire and to challenge. Quite apart from his extensive research achievements, for which he earned a reputation as an outstanding problem-solver, he was a leader in the movement of the 1950s and 1960s to re-think the content of school mathematics syllabuses. (Center for Mathematical Sciences, Cambridge)
During his lifetime, great changes were made in the teaching of mathematics at schools, a matter on which he held strong and opposed, but by no means reactionary, views. He published widely and gave many lectures critical of soft theory at the expense of problem-solving and beauty in mathematics. His best known work, `On the enfeeblement of mathematical skills by `Modern Mathematics' and by similar soft intellectual trash in schools and universities' (published in the Bulletin of the Institute of Mathematics and its Applications, 1968), is now regarded as a force for good at a crossroads of mathematics education. (from his Independent obituary)



2010 Clive W. Kilmister (1924 – May 2, 2010) was a British Mathematician who specialized in the mathematical foundations of Physics, especially Quantum Mechanics and Relativity and published widely in these fields (see References). He was one of the discoverers of the Combinatorial Hierarchy, along with A. F. Parker-Rhodes, E. W. Bastin, and J.C.Amson. He was strongly influenced by astrophysicist Arthur Eddington and was well known for his elaboration and elucidation of Eddington’s fundamental theory.
Kilmister attended Queen Mary College London for both his under- and postgraduate degrees. His PhD was supervised by cosmologist George McVittie (himself a student of Eddington), and his dissertation was entitled ‘’The Use of Quaternions in Wave-Tensor Calculus’’ which related to Eddington’s work. Kilmister received his doctoral degree in 1950. His own students included Brian Tupper (1959, King's College London, now professor emeritus of general relativity and cosmology at University of New Brunswick Fredericton [2]), Samuel Edgar (1977, University of London), and Tony Crilly (reader in mathematical sciences at Middlesex University and author of The Big Questions: Mathematics (1981).
Kilmister was elected as a member of the London Mathematical Society during his doctoral studies (March 17, 1949). Upon graduation, he began his career as an Assistant Lecturer in the Mathematics Department of King’s College in 1950. The entirety of his academic career was spent at King’s. In 1954, Kilmister founded the King’s Gravitational Theory Group, in concert with Hermann Bondi and Felix Pirani, which focused on Einstein’s theory of general relativity. At retirement, Kilmister was both a Professor of Mathematics and Head of the King’s College Mathematics Department.
He was Gresham Professor of Geometry, 1972-88. *Wik





Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Thursday, 1 May 2025

On This Day in Math - May 1

 


The only way to learn a new programming language
is by writing programs in it.
- B. Kernighan & D. Ritchie


The 121st day of the year; 5! +1 = 121 will be the largest year day of the form n!+1 which is a square number. Brocard conjectured in 1904 that the only solutions of n! + 1 = m2 are n = 4, 5, and 7. There are no other solutions with n<109. 121 is also the only square of the form 1 + n + n2+ n3 + n4. *What's So Special About This Number

121 = (12!-11!) / (10!)  (try others in this pattern and find a surprise   ((n+1)! - n! )) / ((n-1)!)  *ExpertSays

121 is also a Smith Number, a composite number for which the sum of its digits is equal to the sum of the digits in its prime factorization. Smith numbers were named by Albert Wilansky of Lehigh University. He noticed the property in the phone number (493-7775) of his brother-in-law Harold Smith:
4937775 = 3 × 5 × 5 × 65837, while 4 + 9 + 3 + 7 + 7 + 7 + 5 = 3 + 5 + 5 + 6 + 5 + 8 + 3 + 7 = 42.
There are 49 Smith numbers below 1000, collect the whole set.

121 is a palindrome in base ten, and also in base 3 (11111), base 7 (232) and base 8(171). No other year day is a base ten palindrome  and also palindrome in as many other (2-9) bases.

star number, is a number for the set of points that would be in the interior of a Chinese checker table in which the "home" triangles are of size n.  The star number for the standard board with ten in each home triangle has 121 = 5+6+7+8+9+8 +7+6+5 points.  (Chinese checkers are neither Chinese, or Checkers, but fun anyway.) 






EVENTS

1006 Supernova is observed in the constellation Lupus, the Wolf. *VFR
[SN 1006 was a supernova, widely seen on Earth beginning in the year 1006 AD; Earth was about 7,200 light-years away from the supernova. It was the brightest apparent magnitude stellar event in recorded history reaching an estimated -7.5 visual magnitude. First appearing in the constellation of Lupus between April 30 and May 1 of that year, this "guest star" was described by observers in China, Egypt, Iraq, Japan, Switzerland, and possibly North America....A petroglyph by the Hohokam in White Tank Mountain Regional Park Maricopa County, Arizona, has been interpreted as the first known North American representation of the supernova. ]*Wik
["Having looked at the White Tanks rock art panel, I am appalled," says Edwin C. Krupp, Director of the Griffith Observatory in Los Angeles and author of Archaeoastronomy and the Roots of Science. "Panels like this are not rare. There is no reason to link it to any supernova event. There is nothing persuasive about the imagery to support the extraordinarily detailed claim. The authors say nothing about all of the other imagery on the boulder and select two details for their discussion. These two details are in themselves dubiously interpreted."
"This Supernova 1006 petroglyph interpretation is nothing but assumptions and wishful thinking," he adds.] (Sky and Telescope Magazine)
Make up your own mind, I think this is it...


image of remnant of 1006 Supernova



1514 The catalog of a Cracow professor’s books included “a manuscript of six leaves expounding the theory of an author who asserts that the earth moves while the sun stands still.” The professor was unable to identify the author, as Copernicus prudently withheld his name from his Commentariolus. *VFR
[Around 1514 he distributed a little book, not printed but hand written, to a
few of his friends who knew that he was the author even though no author is
named on the title page. This book, usually called the Little Commentary,
set out Copernicus's theory of a universe with the sun at [near!? HV] its
center. The Little Commentary is a fascinating document. It contains seven
axioms which Copernicus gives, not in the sense that they are self evident,
but in the sense that he will base his conclusions on these axioms and
nothing else; see . What are the axioms? Let us state them:

1.There is no one center in the universe.

2.The Earth's center is not the center of the universe.

3.The center of the universe is near the sun.

4.The distance from the Earth to the sun is imperceptible compared with
the distance to the stars.

5.The rotation of the Earth accounts for the apparent daily rotation of
the stars.

6.The apparent annual cycle of movements of the sun is caused by the
Earth revolving round it.

7.The apparent retrograde motion of the planets is caused by the motion
of the Earth from which one observes.


Here, for the sake of brevity, I have thought it desirable to omit the
mathematical demonstrations intended for my larger work.

It is likely that he wrote the Little Commentary in 1514 and began writing
his major work De revolutionibus in the following year.] *SAU




1624 If you lived in New York City at any point from colonial times to World War II, then you'd really have some complaints come May 1. May Day, that oh-so-pleasant-sounding spring day, was also known as "Moving Day" because it was the day when everyone moved. Yep, everyone.

According to legend, Moving Day originated from the Dutch. They set out on their first journey to Manhattan on May 1 (eventually "buying" Manhattan from the Native Americans with trinkets and beads) and celebrated that journey every year thereafter by moving houses — creating a tradition that would last for several centuries while Manhattan grew and grew.

In the days before rent control, custom called for landlords to notifiy tenants of their rent increase for the coming year on February 1, giving them three months to make new housing arrangements before their price increase went into effect on, you guessed it, May 1.

On that day, horse-drawn carriages flooded the streets, carting the belongings of every New York renter back and forth and, of course, creating mass chaos. apartmenttherapy.com




1631 Fermat received the degree of Bachelor of Civil Laws from the University of Orleans. He practiced law, but did mathematics.


1683 In Ole Rømer's position as royal mathematician, he introduced the first national system for weights and measures in Denmark . Initially based on the Rhine foot, a more accurate national standard was adopted in 1698. Later measurements of the standards fabricated for length and volume show an excellent degree of accuracy. His goal was to achieve a definition based on astronomical constants, using a pendulum. This would happen after his death, practicalities making it too inaccurate at the time. Notable is also his definition of the new Danish mile of 24,000 Danish feet (circa 7,532 m). * Wik Römer was Cassini's assistant and first determined the speed of light at the Paris Observatory in 1675, by observing differences in times for the moons of Jupiter depending on whether the earth was near or far from Jupiter, getting about 3.2 x 108 m/sec. (However, another source says he didn't compute the speed, merely noted that there was a difference, which showed that light had a finite speed. Others did the calculation, using various values for the distance of the earth from the sun and obtained results ranging from 2.6 to 5.6 x 10^8 m/sec, all of which are attributed to Romer. [Sobel, pp. 29-30] says he calculated the speed in 1676 and got a slight underestimate. [Don Glass, ed.; Why You Can Never Get to the End of the Rainbow and Other Moments of Science; Indiana Univ Press, Bloomington, Indiana, 1993, p. 102] says Romer announced his results to the Académie des Sciences in Sep 1676, correctly predicting the eclipse of Io on 9 Nov would be 10 minutes late and says Romer got a speed of light about 2.3 x 10^8 m/sec.)





1804 George Baron publishes the first copy of the Mathematical Correspondent. This was the first mathematics journal published in the United States, and in fact, the first specialized science journal of any kind in the US. The founder and editor-in-chief, George Baron, was the first Superintendent and mathematics professor at what would become the US Military Academy at West Point, NY. *Wik 

While at West Point he used Charles Hutton's A Course in Mathematics and a blackboard, the first recorded use of the latter in America.

 The journal published an essay by Robert Adrian which was the first to introduce Diophantine analysis in the United States. In 1807, Adrian, a main contributor to the journal, became editor for one year.

One has to understand that publishing a mathematics journal in the United States at this time was not an easy task since there were only two mathematicians capable of work of international standing in the whole country, namely Adrain and Nathaniel Bowditch. Despite these problems, Adrain decided to try publishing his own mathematics journal after he had edited only one volume of the Mathematical Correspondent and, in 1808, he began editing his journal the Analyst or Mathematical Museum.




1820 Moving Day was a tradition in New York City dating back to colonial times and lasting until after World War II. On February 1, sometimes known as "Rent Day", landlords would give notice to their tenants what the new rent would be after the end of the quarter, and the tenants would spend good-weather days in the early spring searching for new houses and the best deals. On May 1, all leases in the city expired simultaneously at 9:00 am, causing thousands of people to change their residences, all at the same time.

Local legend has it that the tradition began because May 1 was the day the first Dutch settlers set out for Manhattan, but The Encyclopedia of New York City links it instead to the English celebration of May Day. While it may have originated as a custom, the tradition took force of law by an 1820 act of the New York State Legislature, which mandated that if no other date was specified, all housing contracts were valid to the first of May – unless the day fell on a Sunday, in which case the deadline was May 2

Moving Day in New York


1854 Lord Kelvin reads a paper to the Royal Society of Edinburgh on which he attempts to weigh the ether. "There must be a medium forming a continuous material communication throughout space to the remotest visible body." He felt that air and ether were the same thing and that the Earth's atmosphere extended throughout space.*The correspondence between Sir George Gabriel Stokes and Sir ..., Volume 1, pg XXXii, By Sir George Gabriel Stokes, Baron William Thomson Kelvin




In 1851, the Great Exhibition of the Works of Industry of All Nations opened in Hyde Park, London, England. This was the first international exhibition to be held in any country. Housed in Paxton's magnificent Crystal Palace, it provided a showcase for many thousands of inventions. The legacy of the Great Exhibition of 1851, still lives on today. Several great institutions were founded with the profits, including the Victoria and Albert Museum and Imperial College. Scholarships which were setup and still continue reaped an immense contribution to the world's body of knowledge. Recipients included several Nobel prize winnners: one scholarship went to Ernest Rutherford, a son of a New Zealand farmer. *TIS




1861 Oswego Training School, Oswego, N.Y., established. It was the first state normal school at which students actually conducted classes. In 1861, Edward Austin Sheldon founded what would become SUNY Oswego as the first urban teacher training program in the United States.

Oswego Normal School 1905



1888 Nikola Tesla was issued several patents relating to the induction magnetic motor, alternating current (AC) sychronous motor, AC transmission and electricity distribution (Nos. 381,968-70; 382,279-82) *TIS


1893 The Chicago World’s Fair opened. Felix Klein came from Germany. The plaster models he brought along created a classroom vogue. (MathDL MAA) [It may be that some give Klein's visit to much credit for the use of models in schools. Cajori's "The Teaching and History of Mathematics in the United States", published in 1890 suggests that "most" high schools and colleges used models in geometry classes. Klein was surely a dominant influence in the use of models in Germany, and that use spread to the US; but it seems not to have been Klein's visit that sparked their use. Interestingly, Hans Freudenthal in his "Weeding and sowing: preface to a science of mathematical education", credits Klein with being the first to use "model" in the sense of an abstract mathematical idea in his description of a non-Euclidean geometry. After the Fair Klein traveled around the country visiting several colleges. The New York Mathematical Society had a special meeting in his honor at Columbia College on Sept 30. pb]




1902 As the slight and aged Lord Kelvin was led slowly down the aisle of Anderson Hall by Rochester University President, Dr. Rush Rhees, students stood quietly in honor, and then, broke out into a rousing cheer for a scientist, a British Scientist. Lord Kelvin had visited America five years earlier, and five years later he would be dead.*David Lindley , Degrees Kelvin: a tale of genius, invention, and tragedy




1930 The name for Pluto is announced to the world: The name Pluto was proposed by Venetia Burney (1918–2009), an eleven-year-old schoolgirl in Oxford, England. Venetia was interested in classical mythology as well as astronomy, and considered the name, a name for the god of the underworld, appropriate for such a presumably dark and cold world. She suggested it in a conversation with her grandfather Falconer Madan, a former librarian at the University of Oxford's Bodleian Library. Madan passed the name to Professor Herbert Hall Turner, who then cabled it to colleagues in the United States.

Her grandfather’s brother, Henry Madan, had come up with the names for Mar’s moons, Deimos and Phobos.  He was a chemist at Queens College Oxford.
The object was officially named on March 24, 1930. Each member of the Lowell Observatory was allowed to vote on a short-list of three: Minerva (which was already the name for an asteroid), Cronus (which had lost reputation through being proposed by the unpopular astronomer Thomas Jefferson Jackson See), and Pluto. Pluto received every vote. The name was announced on May 1, 1930. Upon the announcement, Madan gave Venetia five pounds (£5) as a reward.
It has been noted that the first two letters of Pluto are the initials of Percival Lowell, and Pluto's astronomical symbol (♇) is a monogram constructed from the letters 'PL'. *Wik



1935 Austria issued a stamp for Mother’s Day portraying “Mother and Child” after a painting by Albrecht Durer. He is the mathematician that has the most stamps issued dealing with him. [Scott #376; Germany Scott #362 was issued in 1926–7, so this is the second stamp devoted to D¨urer].





In 1949, Gerard Kuiper discovered Nereid, the second satellite of Neptune, the outermost and the third largest of Neptune's known satellites. (Orbit: ave 5,513,400 km, diameter: 340 km). Nereid's orbit is the most highly eccentric of any planet or satellite in the solar system; its distance from Neptune varies from 1,353,600 to 9,623,700 kilometers. Nereid's odd orbit indicates that it may be a captured asteroid or Kuiper Belt object. The name, Nereid refers to the sea nymphs who dwell in the Mediterranean sea, the 50 daughters of Nereus and Doris. Kuiper, a Dutch-American astronomer (1905-1973) also studied the surface of the Moon; discovered Miranda, a moon of Uranus; and found an atmosphere on Titan, a moon of Saturn. *TIS

Kuiper (1905 - 1973) is regarded by many as the father of modern planetary science. He is well known for his many discoveries, including:

1947: He correctly predicted carbon dioxide is a major component of the atmosphere of Mars.
1947: He correctly predicted the rings of Saturn are composed of particles of ice.
1947: He discovered Miranda, the fifth moon of Uranus.
1949: He discovered the moon Nereid orbiting Neptune.
1949: He proposed an influential theory of the origin of our solar system, suggesting the planets had formed by the condensation of a large cloud of gas around the Sun.
1951: He proposed the existence of what is now called the Kuiper Belt, a disk-shaped region of icy objects outside the orbit of Neptune, a region that produces many comets.
1956: He proved that Mars' polar icecaps are composed of frozen water and not of carbon dioxide as they had been previously assumed.
1964: He predicted what the surface of the Moon wo uld be like to walk on—"like crunchy snow". This was verified by astronaut Neil Armstrong in 1969. *NASA





In 1958, the discovery of the powerful Van Allen radiation belts that surround Earth was published in the Washington Evening Star. The article covered the report made by their discoverer James. A. Van Allen to the joint sysmposium of the National Academy of Sciences and the American Physical Society in Washington DC. He used data from the Explorer I and Pioneer III space probes of the earth's magnetosphere region to reveal the existence of the radiation belts - concentrations of electrically charged particles. Van Allen (born 7 Sep 1914) was also featured on the cover of the 4 May 1959 Time magazine for this discovery. He was the principal investigator on 23 other space probes. *TIS



1964 John Kemeny and John Kurtz run the first BASIC program at Dartmouth. In 1964, first BASIC program was run on a computer at about 4:00 a.m. Invented at Dartmouth University by professors John G. Kemeny and Thomas E. Kurtz, the first implementation was a BASIC compiler. Basic is an acronym for Beginner's All-purpose Symbolic Instruction Code, designed to be an easy programming language to learn quickly how to write simple programs. Originally for mainframes, BASIC was adopted for use on personal computers when they became available. *TIS
[Work on the compiler and the operating system was done concurrently, and so the first BASIC programs were run in batch mode as part of the development process during early 1964. However on May 1, 1964 at 4 a.m. ET, John Kemeny and John McGeachie ran the first BASIC programs to be executed successfully from terminals by the DTSS system. It is not completely clear what the first programs were. However, the programs either consisted of the single line:PRINT 2 + 2 {Let us hope it printed "4" (PB)}or were implementations of the Sieve of Eratosthenes, according to a 1974 interview in which Kemeny and McGeachie took part.] *Wik

Early in BASIC's history, its creators, John Kemeny (left) and Thomas Kurtz (center) go over a program with a Dartmouth student




2014  At a Harvard seminar on May 13, 2013, the first step was  produced in solving the twin primes conjecture.  A lecturer from the University of New Hampshire, Yitang Zhang, had proved that there are infinitely many pairs of primes that differ by no ,ore than 70,000,000.  It was a long way from differing by two, but it was an even greater distance from infinity.  He had submitted his paper to the Annals of Mathematics in April, and they had rushed to get reviews, which turned out to be enthusiastically positive. By May 21, 2013, the paper was accepted for publication on the 1st of May 2014.
By the 31st of May 2013, a group led by Scott Morrison and Terry Tao had lowered the gap to 42,342,946; game on!

This work led to a 2013 Ostrowski Prize, a 2014 Cole Prize, a 2014 Rolf Schock Prize, and a 2014 MacArthur Fellowship. Zhang became a professor of mathematics at the University of California, Santa Barbara in fall 2015.



BIRTHS

1591 Adam Schall von Bell (1 May 1591; 15 Aug 1666 at age 75) German missionary and astronomer, a Jesuit, who in China (from 1619) revised the Chinese calendar, translated Western astronomical books and was head of Imperial Board of Astronomy (1644-64). He became a trusted adviser (1644-61) to Emperor Shun-chih, first emperor of the Ch'ing dynasty (1644-1911/12) who made him a mandarin. He lost power after the emperor's death (1661). Although then tried (1664) and convicted for plotting against the emperor and state, his sentence was commuted. *TIS



1792 Rufus Porter (May 1, 1792 – August 13, 1884) was an American painter, inventor, and founder of Scientific American magazine.  He put out the first issue of Scientific American on 28 Aug 1845, but sold that business 10 months later to Orson Munn and Alfred Ely Beach. He editted it for one more year. 
As an inventor, he had little business sense, but held over 100 patents, including a fire alarm, signal telegraph, fog whistle, and a washing machine. He sold his patent for a revolving rifle to Samuel Colt for $100 in 1844. He had an interest in painting portraits, and in 1820 built a camera obscura. From 1820, he became interested in the hot-air balloon. He constructed his first model in 1833. Porter built and exhibited other models. By 1853, he demonstrated a 22-foot model airship which circled in the rotunda of the New York Merchant's Exchange. Ultimately, despite trying, he had no major success in aerial navigation.*TIS
Rufus Porter advertisement for his 1849 New York to California transport





1793  Jakob Philipp Kulik (1 May 1793 in Lemberg, Austrian Empire (now Lviv, Ukraine) - 28 Feb 1863 in Prague, Czech Republic) Austrian mathematician known for his construction of a massive factor tables.
Kulik was born in Lemberg, which was part of the Austrian empire, and is now Lviv located in Ukraine.In 1825, Kulik mentioned a table of factors up to 30 millions, but this table does no longer seem to exist. It is also not clear if it had really been completed.
From about 1825 until 1863 Kulik produced a factor table of numbers up to 100330200 (except for numbers divisible by 2, 3, or 5). This table basically had the same format that the table to 30 millions and it is therefore most likely that the work on the "Magnus canon divisorum" spanned from the mid 1820s to Kulik's death, at which time the tables were still unfinished. These tables fill eight volumes totaling 4212 pages, and are kept in the archives of the Academy of Sciences in Vienna. Volume II of the 8 volume set has been lost.*Wik



1825 Johann Jakob Balmer ((May 1, 1825 – March 12, 1898)Swiss mathematician and physicist who discovered a formula basic to the development of atomic theory. Although a mathematics lecturer all his life, Balmer's most important work was on spectral series by giving a formula relating the wavelengths of the spectral lines of the hydrogen atom (1885) at age 60. Balmer's famous formula is = hm2/(m2-n2). Wavelengths are accurately given using h = 3654.6x10-8-cm, n = 2, and m = 3, 4, 5, 6, 7. He suggested that giving n other small integer values would give other series of wavelengths for hydrogen. Why this prediction agreed with observation was not understood until after his death when the theoretical work of Niels Bohr was published in 1913. *TIS



1891 Louis Melville Milne-Thomson, CBE (1 May 1891 – 21 August 1974) was an English applied mathematician who wrote several classic textbooks on applied mathematics, including The Calculus of Finite Differences, Theoretical Hydrodynamics, and Theoretical Aerodynamics. He is also known for developing several mathematical tables such as Jacobian Elliptic Function Tables. The Milne-Thomson circle theorem is named after him.[1] Milne-Thomson was made a Commander of the Order of the British Empire (CBE) in 1952.*Wik




1908 Morris Kline (May 1, 1908 – June 10, 1992) was a Professor of Mathematics, a writer on the history, philosophy, and teaching of mathematics, and also a popularizer of mathematical subjects.
Kline grew up in Brooklyn and in Jamaica, Queens. After graduating from Boys High School in Brooklyn, he studied mathematics at New York University, earning a bachelor's degree in 1930, a master's degree in 1932, and a doctorate in 1936. He continued at NYU as an instructor until 1942.
During World War II, Kline was posted to the Signal Corps (United States Army) stationed at Belmar, New Jersey. Designated a physicist, he worked in the engineering lab where radar was developed. After the war he continued investigating electromagnetism, and from 1946 to 1966 was director of the division for electromagnetic research at the Courant Institute of Mathematical Sciences.
Kline resumed his mathematical teaching at NYU, becoming a full professor in 1952. He taught at New York University until 1975, and wrote many papers and more than a dozen books on various aspects of mathematics and particularly mathematics teaching. He repeatedly stressed the need to teach the applications and usefulness of mathematics rather than expecting students to enjoy it for its own sake. Similarly, he urged that mathematical research concentrate on solving problems posed in other fields rather than building structures of interest only to other mathematicians. *Wik




1908 Hans Herbert Schubert (1 May 1908 in Weida, Thüringen Germany - 24 Nov 1987 in Halle, Germany) German mathematician who worked on differential equations. *SAU

1924 Evelyn Boyd Granville (May 1, 1924 - June 27, 2023 ) was the second African-American woman in the U.S. to receive a PhD in mathematics. (The first was Euphemia Haynes who was awarded her PhD from Catholic University in 1943.)
With financial support from her aunt and a small partial scholarship from Phi Delta Kappa, Granville entered Smith College in the fall of 1941. She majored in mathematics and physics, but also took a keen interest in astronomy. She was elected to Phi Beta Kappa and to Sigma Xi and graduated summa cum laude in 1945. Angeles]]. In L.A., Granville accepted the position of Research Specialist with the Space and Information Systems Division of the North American Aviation Company, but returned to IBM the following year. Both positions involved trajectory analysis and orbit computation. In 1967, Granville’s marriage ended in divorce. At the same time, IBM was cutting staff in Los Angeles, so Granville applied for a teaching position at California State University in Los Angeles, California.
She moved to California State University at Los Angeles in 1967 as a full professor of mathematics and married Edward V. Granville in 1970. After retiring from California State in 1984 she joined the faculty of the University of Texas at Tyler as professor and chair of mathematics. There she developed elementary school math enrichment programs. One of three African American women honored by the National Academy of Science in 1999, she has been awarded honorary degrees by Smith College and Lincoln University. 
Granville died at her apartment in Silver Spring, Maryland on June 27, 2023, at the age of 99*Wik

Dr. Scott Williams at Buffalo has a website about Black Women in Mathematics including many biographies.



1926 Peter David Lax (1 May 1926 - ) is a mathematician working in the areas of pure and applied mathematics. He has made important contributions to integrable systems, fluid dynamics and shock waves, solitonic physics, hyperbolic conservation laws, and mathematical and scientific computing, among other fields. Lax is listed as an ISI highly cited researcher. In a 1958 paper Lax stated a conjecture about matrix representations for third order hyperbolic polynomials which remained unproven for over four decades. Interest in the "Lax conjecture" grew as mathematicians working in several different areas recognized the importance of its implications in their field, until it was finally proven to be true in 2003.
Lax holds a faculty position in the Department of Mathematics, Courant Institute of Mathematical Sciences, New York University*Wik




1942 Margaret Jane Helen Arnott Wadsworth (1 May, 1942; 12 July, 1991) Jane Wadsworth (née Arnott) was a statistician who applied her skills to data coming from a wide range of topics relating to medical research. She devoted the latter part of her life to combating the AIDS epidemic by constructing and carrying out surveys to establish the pattern of HIV infection in Britain.  She was also a pioneer in academic sexual health research.

When the Aids epidemic arrived, Wadsworth became involved in determining the pattern of the HIV infection throughout Britain. This was the first attempt to conduct a study about sexual behaviour in the UK and gave Jane Wadsworth the opportunity to take the leading role in initiating her own research programme for the first time. During this period, Wadsworth's personal life became more strained, however, and her marriage broke up in the late 1980s.

After several years of laying the foundations for sex research, Wadsworth, together with Julia Field, Anne Johnson and Kaye Wellings, embarked on a national study during which they interviewed 18,876 men and women about their sex lives. The study was filmed by Horizon for television and the women briefly found themselves in the eye of the media.

In 1994, Wadsworth and her fellow researcher published Sexual Attitudes and Lifestyle detailing the results of the survey. A version of this, Sexual Behavior in Britain, was serialized in the Independent on Sunday. As the first of its kind, the National Survey of Sexual Attitudes and Lifestyle (NATSAL) became both the gold standard and the model for subsequent studies for a number of countries the world.  *Wik & SAU





DEATHS


Israel Lyons the Younger (1739–May 1, 1775)  mathematician and botanist, was born at Cambridge, the son of Israel Lyons the elder. He was regarded as a prodigy, especially in mathematics, and Robert Smith, master of Trinity College, took him under his wing and paid for his attendance.
Due to his Ashkenazi Jewish origins, Lyons was not permitted to become an official member of the University of Cambridge. Nevertheless, his brilliance resulted in his publication Treatise on Fluxions at the age of 19, and his enthusiasm for botany resulted in a published survey of Cambridge flora a few years later. An Oxford undergraduate, Joseph Banks, paid Lyons to deliver a series of botany lectures at the University of Oxford. Lyons was selected by the Astronomer Royal to compute astronomical tables for the Nautical Almanac. Later, Banks secured Lyons a position as the astronomer for the 1773 North Pole voyage led by Constantine Phipps, 2nd Baron Mulgrave.
Lyons married, in March 1774, Phoebe Pearson, daughter of Newman Pearson of Over, Cambridgeshire, and settled in Rathbone Place, London. There he died of measles on 1 May 1775, at the age of only 36, while preparing a complete edition of Edmond Halley's works sponsored by the Royal Society. *Wik






1859 John Walker (29 May 1781 – 1 May 1859) was an English inventor who invented the friction match.
He made them from small wooden sticks which he coated with sulphur, then tipped with a mixture of potassium chlorate, antimony sulphide and a binder of gum arabic. After searching for a suitable mixture with the intent of making a useful way to start a fire, he was successful on 27 Nov 1826. Beginning on 7 Apr 1827, he sold them in boxes of 50 for a shilling, with a folded slip of sandpaper as a striking surface. He called them Congreves, to honour Sir William Congreve, known for his invention of military rockets. He declined to patent the matches, yet was still able to make a comfortable income from them.  *TIS

He did not name the matches "Congreves" in honour of the inventor and rocket pioneer, Sir William Congreve as it is sometimes stated. The congreves were the invention of Charles Sauria, a French chemistry student at the time. He did not divulge the exact composition of his matches.

Two and a half years after Walker's invention was made public Isaac Holden arrived, independently, at the same idea of coating wooden splinters with sulphur. The exact date of his discovery, according to his own statement, was October 1829. Before that date Walker's sales-book contains an account of no fewer than 250 sales of friction matches, the first entry dated 7 April 1827.
 The credit for his invention was attributed only after his death.








1870 Gabrial Lamé (July 22, 1795 – May 1, 1870) worked on a wide variety of different topics. His work on differential geometry and contributions to Fermat's Last Theorem are important. He proved the theorem for n = 7 in 1839. [he proved that x7+y7=z7 could not be true for integral values of x, y, z all greater than 0]
He became well known for his general theory of curvilinear coordinates and his notation and study of classes of ellipse-like curves, now known as Lamé curves, and defined by the equation:

\left|\,{x\over a}\,\right|^n + \left|\,{y\over b}\,\right|^n =1



where n is any positive real number.

He is also known for his running time analysis of the Euclidean algorithm. Using Fibonacci numbers, he proved that when finding the greatest common divisor of integers a and b, the algorithm runs in no more than 5k steps, where k is the number of (decimal) digits of b. He also proved a special case of Fermat's last theorem. He actually thought that he found a complete proof for the theorem, but his proof was flawed. The Lamé functions are part of the theory of ellipsoidal harmonics. *Wik




2011 J. Ernest Wilkins, Jr. (27 Nov 1923, 1 May 2011) African-American physicist, mathematician, and engineer (chemical/nuclear). He entered the University of Chicago at age 13, and by age 19, in 1942, he became the seventh African American to obtain a Ph.D. in Mathematics. His career achievement has been to develop radiation shielding against gamma radiation, emitted during electron decay of the Sun and other nuclear sources. He developed mathematical models to calculate the amount of gamma radiation absorbed by a given material. This technique of calculating radiative absorption is widely used among researcher in space and nuclear science projects. His was also a joint owner of a company which designed and developed nuclear reactors for electrical power generation.*TIS

Sketch of Wilkins from a U.S. Department of Energy biography


2011 Steven Alan Orszag (February 27, 1943 – May 1, 2011) was an American mathematician.  In 1962, at the age of 19, he graduated with a B.S. in Mathematics from the Massachusetts Institute of Technology where he was a member of the Pi Lambda Phi fraternity.  He did post graduate study at Cambridge University and in 1966 graduated with a Ph.D. in astrophysics from Princeton University. His thesis adviser was Martin David Kruskal. In 1967, Orszag was appointed as a professor of applied mathematics at the Massachusetts Institute of Technology, where he collaborated with Carl M. Bender, and was a Member of the Institute for Advanced Study. In 1984, he was appointed Forrest E Hamrick Professor of Engineering at Princeton University. In 1988, he accepted a position at Yale University and in 2000, he was named the Percey F. Smith Professor of Mathematics at Yale University from 2000 until his death in 2011.

Orszag has won numerous awards including Sloan Fellowship and Guggenheim Fellowship, the American Institute of Aeronautics and Astronautics Fluid and Plasmadynamics Award, the Otto Laporte Award of the American Physical Society, and the Society of Engineering Science's G. I. Taylor Medal.

Orszag specialized in fluid dynamics, especially turbulence, computational physics and mathematics, electronic chip manufacturing, computer storage system design, and other topics in scientific computing. His work included the development of spectral methods, pseudo-spectral methods, direct numerical simulations, renormalization group methods for turbulence, and very-large-eddy simulations. He was the founder of and/or chief scientific adviser to a number of companies, including Flow Research, Ibrix (now part of HPQ), Vector Technologies, and Exa Corp. 

Orszag has been listed as an ISI Highly Cited Author in Engineering by the ISI Web of Knowledge, Thomson Scientific Company.

 At MIT he was a colleague of Carl M Bender and together they collaborated on a graduate level mathematics course for seven years. Bender said: [The course] was so popular that a lot of students from Harvard came to take it as well. A course that good really wasn't offered at Harvard.

Offer Pade' added in a comment:  "Spectral methods were developed in a long series of papers by Steven Orszag starting in 1969 including, but not limited to, Fourier series methods for periodic geometry problems, polynomial spectral methods for finite and unbounded geometry problems, pseudospectral methods for highly nonlinear problems, and spectral iteration methods for fast solution of steady-state problems. The implementation of the spectral method is normally accomplished either with collocation or a Galerkin or a Tau approach . For very small problems, the spectral method is unique in that solutions may be written out symbolically, yielding a practical alternative to series solutions for differential equations.

The late Prof. Moshe Israeli of the Technion was a leding expert on spectral methods."





2015 Murray Marshall  (March 24, 1940, May  1, 2015) It is with deep sadness that the family of Murray Marshall announces his sudden passing on Friday, May 1, 2015 at the age of 75 years. He was born in Hudson Bay Junction to Fred and Olive Marshall, the middle of three sons. After graduation from Hudson Bay High School, he attended the University of Saskatchewan where he completed his B.A and B. Ed. He completed his Ph.D. in mathematics at Queen's University and then returned to join the faculty at the University of Saskatchewan. Murray married Mary Cey in 1966 .  






Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell