Thursday, 30 March 2017

On This Day in Math - March 30


Jaime Escalante *Wik


A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. One can imagine that the ultimate mathematician is one who can see analogies between analogies.
~Stefan Banach



The 89th day of the year; 89 is the fifth Fibonacci prime and the reciprocal of 89 starts out 0.011235... (generating the first five Fibonacci numbers) *Prime Curios

and 89 can be expressed by the first 5 integers raised to the first 5 Fibonacci numbers: 11 + 25 + 33 + 41+ 52

If you write any integer and sum the square of the digits, and repeat, eventually you get either 1, or 89
(ex:  16; \( 1^2 + 6^2 = 37; 3^2 + 7^2 = 58; 5^2 + 8^2 = 89 \)

An Armstrong (or Pluperfect digital invariant) number is a number that is the sum of its own digits each raised to the power of the number of digits. For example, 371 is an Armstrong number since \(3^3+7^3+1^3 = 371\). There are exactly 89 such numbers, including two with 39 digits. (115,132,219,018,763,992,565,095,597,973,522,401 is the largest) (Armstrong numbers are named for Michael F. Armstrong who named them for himself as part of an assignment to his class in Fortran Programming at the University of Rochester \)

89 is a numeric ambigram (a number that rotates to form a different number), and is the sum of four  strobogrammatic numbers (rotate and stay the same) , 1+8+11+69 = 89.

EVENTS

In 239, B.C., was the first recorded perihelion passage of Halley's Comet by Chinese astronomers in the Shih Chi and Wen Hsien Thung Khao chronicles. Its highly elliptical, 75-year orbit carries it out well beyond the orbit of Neptune and well inside the orbits of Earth and Venus when it swings in around the Sun, traveling in the opposite direction from the revolution of the planets. It was the first comet that was recognized as being periodic. An Englishman, Edmond Halley predicted in 1705 that the comet that appeared over London in 1682 would reappear again in 1759, and that it was the same comet that appeared in 1607 and 1531. When the comet did in fact reappear again in 1759, as correctly predicted, it was named (posthumously) after Halley. *TIS
Comets have been observed and recorded in China since the Shang Dynasty (1600-1046 BC). The set of comet illustrations shown below is from a silk book written during the western Han period.
* Marilyn Shea,umf.maine.edu

1612 The Jesuit astronomer Christoph Scheiner thought he had discovered a 5th Jupiter moon He was mistaken. *Thony Christie, @rmathematicus

In 1791, after a proposal by the Académie des sciences (Borda, Lagrange, Laplace, Monge and Condorcet), the French National Assembly finally chose that a metre would be a 1/10 000 000 of the distance between the north pole and the equator. *TIS (although at the time, this distance was not known. To determine the distance from the North Pole to the equator it was assumed that a portion of a meridian could be measured accurately and the whole distance could then be estimated from this sample. The meridian chosen went from Barcelona in Spain, to Dunquerque in France; this choice was an early example of the intended international nature of the metric system. Two astronomers, Borda and Méchain, were appointed to carry out the measurement. )

1796 The nineteen year old Gauss began his scientific diary with his construction of the regular 17-gon. The Greeks had ruler-and-compass constructions for the regular polygons with 3, 4, 5 and 15 sides, and for all others obtainable from these by doubling the number of sides. Here the problem rested until Gauss completely solved it: A regular n-gon is constructable IFF n is a product of a power of 2 and one or more distinct Fermat primes, i.e., primes of the form 22n +1. This discovery led Gauss to devote his life to mathematics rather than philology. *VFR Gauss told his close friend Bolyai that the regular 17-gon should adorn his tombstone, but this was not done. There is a 17 pointed star on the base of a monument to him in Brunswick because the stonemason felt everyone would mistake the 17-gon for a circle. Gauss gave the tablet on which he had made the discovery to Bolyai, along with a pipe, as a souvenir. (I have been unable to find any later trace of the pipe or tablet, but if anyone has knowledge of the I would appreciate any information.)
*Genial Gauss Gottingen


1858 Pencil with attached eraser patented. It has benefited generations of mathematics students. The first patent for attaching an eraser to a pencil was issued to a man from Philadelphia named Hyman Lipman. This patent was later held to be invalid because it was merely the combination of two things, without a new use. I found a note at about.com that said that "Before rubber, breadcrumbs had been used to erase pencil marks."
*Wik

1867 The U. S. purchases Alaska from Russia for $7,200,000 in gold. The most prominent American mathematician of the time, Benjamin Peirce, then superintendent of the Coast Survey, played a role in the acquisition by sending out a reconnaissance party whose reports were important aids to proponents of the purchase. *VFR

1951 UNIVAC I turned over to Census Bureau. During ENIAC project, Mauchly met with several Census Bureau officials to discuss non-military applications for electronic computing devices. In 1946, with ENIAC completed, Mauchly and Eckert were able to secure a study contract from the National Bureau of Standards (NBS) to begin work on a computer designed for use by the Census Bureau. This study, originally scheduled for six months, took about a year to complete. The final result were specifications for the Universal Automatic Computer (UNIVAC).
UNIVAC was, effectively, an updated version of ENIAC. Data could be input using magnetic computer tape (and, by the early 1950's, punch cards). It was tabulated using vacuum tubes and state-of-the-art circuits then either printed out or stored on more magnetic tape.
Mauchly and Eckert began building UNIVAC I in 1948 and delivered the completed machine to the Census Bureau in March 1951. The computer was used to tabulate part of the 1950 population census and the entire 1954 economic census. Throughout the 1950's, UNIVAC also played a key role in several monthly economic surveys. The computer excelled at working with the repetitive but intricate mathematics involved in weighting and sampling for these surveys.
UNIVAC I, as the first successful civilian computer, was a key part of the dawn of the computer age *US CENSUS Bureau Web page

In 1953, Albert Einstein announced his revised unified field theory.*TIS

1985 M.I.T. computer science graduate students Robert W. Baldwin and Alan T. Sherman successfully decode a cipher consisting of a series of numbers separated by commas. They failed to share in the $116,000 prize offered by Decipher Inc. since they misread the contest rules—the contest ended the previous evening. [Burlington Free Press, 5 April 1985.]

2010 A Blue moon - The second full moon of the month of March. The next month with a blue moon will be in 2012: August 2, August 31

BIRTHS
1862 Leonard James Rogers (30 March 1862, 12 Sept 1933) Rogers was a man of extraordinary gifts in many fields, and everything he did, he did well. Besides his mathematics and music he had many interests; he was a born linguist and phonetician, a wonderful mimic who delighted to talk broad Yorkshire, a first-class skater, and a maker of rock gardens. He did things well because he liked doing them. Music was the first necessity in his intellectual life, and after that came mathematics. He had very little ambition or desire for recognition.
Rogers is now remembered for a remarkable set of identities which are special cases of results which he had published in 1894. Such names as Rogers-Ramanujan identities, Rogers-Ramanujan continued fractions and Rogers transformations are known in the theory of partitions, combinatorics and hypergeometric series. *SAU

1864 Helen Abbot Merrill born in Llewellyn Park, Orange, New Jersey. She graduated from Wellesley College in 1886, taught school for several years and then returned to teach at Wellesley from 1893 until her retirement in 1932. She studied function theory with Heinrich Maschke at Chicago, descriptive geometry with G. F. Shilling at G¨ottingen, and function theory with James Pierpont at Yale, where she received her Ph.D. in 1903. She wrote a popular book about mathematics, Mathematical Excursions (1933), that has been reprinted by Dover.*WM
A rare (and a little pricey) collectors favorite


1879 Bernhard Voldemar Schmidt (30 Mar 1879, 1 Dec 1935) Astronomer and optical instrument maker who invented the telescope named for him. In 1929, he devised a new mirror system for reflecting telescopes which overcame previous problems of aberration of the image. He used a vacuum to suck the glass into a mold, polishing it flat, then allowing in to spring back into shape. The Schmidt telescope is now widely used in astronomy to photograph large sections of the sky because of its large field of view and its fine image definition. He lost his arm as a child while experimenting with explosives. Schmidt spent the last year of his life in a mental hospital.*TIS

1886 Stanisław Leśniewski (March 30, 1886, Serpukhov – May 13, 1939, Warsaw) was a Polish mathematician, philosopher and logician. Leśniewski belonged to the first generation of the Lwów-Warsaw School of logic founded by Kazimierz Twardowski. Together with Alfred Tarski and Jan Łukasiewicz, he formed the troika which made the University of Warsaw, during the Interbellum, perhaps the most important research center in the world for formal logic. *Wik

1892 Stefan Banach (30 Mar 1892, 31 Aug 1945) Polish mathematician who founded modern functional analysis and helped develop the theory of topological vector spaces. In addition, he contributed to measure theory, integration, the theory of sets, and orthogonal series. In his dissertation, written in 1920, he defined axiomatically what today is called a Banach space. The idea was introduced by others at about the same time (for example Wiener introduced the notion but did not develop the theory). The name 'Banach space' was coined by Fréchet. Banach algebras were also named after him. The importance of Banach's contribution is that he developed a systematic theory of functional analysis, where before there had only been isolated results which were later seen to fit into the new theory. *TIS
His doctoral dissertation, which was published in Fundamenta Mathematicae in 1922, marks the birth of functional analysis. *VFR

1921 Alfréd Rényi (20 March 1921 – 1 February 1970) was a Hungarian mathematician who made contributions in combinatorics, graph theory, number theory but mostly in probability theory. He proved, using the large sieve, that there is a number K such that every even number is the sum of a prime number and a number that can be written as the product of at most K primes. See also Goldbach conjecture.
In information theory, he introduced the spectrum of Rényi entropies of order α, giving an important generalisation of the Shannon entropy and the Kullback-Leibler divergence. The Rényi entropies give a spectrum of useful diversity indices, and lead to a spectrum of fractal dimensions. The Rényi–Ulam game is a guessing game where some of the answers may be wrong.
He wrote 32 joint papers with Paul Erdős, the most well-known of which are his papers introducing the Erdős–Rényi model of random graphs. Rényi, who was addicted to coffee, invented the quote: "A mathematician is a device for turning coffee into theorems.", which is generally ascribed to Erdős. The sentence was originally in German, being a wordplay on the double meaning of the word Satz (theorem or residue of coffee). *Wik

1929 Ilya Piatetski-Shapiro (30 March 1929 – 21 February 2009) During a career that spanned 60 years he made major contributions to applied science as well as theoretical mathematics. In the last forty years his research focused on pure mathematics; in particular, analytic number theory, group representations and algebraic geometry. His main contribution and impact was in the area of automorphic forms and L-functions.
For the last 30 years of his life he suffered from Parkinson's disease. However, with the help of his wife Edith, he was able to continue to work and do mathematics at the highest level, even when he was barely able to walk and speak.*Wik


DEATHS
1559 Adam Ries (23 Dec 1492 in Staffelstein (near Bamberg), Upper Franconia (now Germany) - 30 March 1559 in Annaberg, Saxony (now Annaberg-Buchholz, Germany) Ries's income came mainly from his arithmetic textbooks. The first of these was Rechnung auff der linihen written while he was in Erfurt and printed in that city in 1518 by Mathes Maler. The book was intended to teach people how to use a calculating board similar to an abacus. This type of device is described by the Money Museum,
Four horizontal and five vertical lines were painted or carved on the calculating boards to represent the decimal values in ascending order. The arithmetical sums were worked out with the help of coin-like counters. They were placed on the respective lines according to the values of the numbers and then, depending on the calculation, these were moved, removed or added to the lines until the final result could be read off. No numbers were printed on the counters; they amounted to as much as the line on which they were placed.
No copy of the first edition of this book has survived, the earliest that we have is the second of the four editions which was published in 1525.
Dirk Struik writes,
Adam Ries has remained in German memory because of his Rechenbücher -schoolbooks on arithmetic, popular for a century and a half. It is less known that he also wrote an algebra, called the Cosz, but this work has remained in manuscript form. Three of these manuscripts were bound together in 1664 by the Dresden Rechenmeister Martin Kupffer. They were thought to be lost until they were found in 1855, and are now kept at the Erzgebirgsmuseum Annaberg-Buchholz, Annaberg being the Saxonian mining town where Ries lived as a respected citizen and teacher for many years until his death. The impressive folio facsimile, published on the occasion of the 500th birthday of Ries, contains three manuscripts: Cosz I (pp. 1-325) was finished in 1524, Cosz II (pp. 329-499) was written between 1545 and 1550 ...
*SAU
Thony Christie pointed out to me that the German Wikipedia gives his date of death as April 2. He also has confirmed that the phrase "das macht nach Adam Ries" (That's according to Adam Ries) is still used in Germany to indicate something is done correctly, sort of like the American idiom, "according to Hoyle."

And here is the amazing story of how he was billed for his television license over 450 years after his death.

1832 Stephen Groombridge (7 Jan 1755; 30 Mar 1832) English astronomer and merchant, who compiled the Catalogue of Circumpolar Stars (corrected edition published 1838), often known as the Groombridge Catalog. For ten years, from 1806, he made observations using a transit circle, followed by another 10 years adjusting the data to correct for refraction, instrument error and clock error. He retired from the West Indian trade in 1815 to devote full time to the project. He was a founder of the Astronomical Society (1820). His work was continued by others when he was struck (1827) with a "severe attack of paralysis" from which he never fully recovered. The catalog eventually listed 4,243 stars situated within 50° of the North Pole and having apparent magnitudes greater than 9. Editions of the catalog were published posthumously. The 1833 edition was withdrawn due to errors, and corrected in 1838 by A Catalog of Circumpolar Stars, Reduced to January 1, 1810, edited by G. Biddell Airy. *TIS

1914 John Henry Poynting (9 Sep 1852; 30 Mar 1914)British physicist who introduced a theorem (1884-85) that assigns a value to the rate of flow of electromagnetic energy known as the Poynting vector, introduced in his paper On the Transfer of Energy in the Electromagnetic Field (1884). In this he showed that the flow of energy at a point can be expressed by a simple formula in terms of the electric and magnetic forces at that point. He determined the mean density of the Earth (1891) and made a determination of the gravitational constant (1893) using accurate torsion balances. He was also the first to suggest, in 1903, the existence of the effect of radiation from the Sun that causes smaller particles in orbit about the Sun to spiral close and eventually plunge in.*TIS

1944 Sir Charles Vernon Boys (15 Mar 1855; 30 Mar 1944 at age 88) English physicist and inventor of sensitive instruments. He graduated in mining and metallurgy, self-taught in a wide knowledge of geometrical methods. In 1881, he invented the integraph, a machine for drawing the antiderivative of a function. Boys is known particularly for his utilization of the torsion of quartz fibres in the measurement of minute forces, enabling him to elaborate (1895) on Henry Cavendish's experiment to improve the values obtained for the Newtonian gravitational constant. He also invented an improved automatic recording calorimeter for testing manufactured gas (1905) and high-speed cameras to photograph rapidly moving objects, such as bullets and lightning discharges. Upon retirement in 1939, he grew weeds.*TIS

1954 Fritz Wolfgang London (7 Mar 1900; 30 Mar 1954 at age 53) German-American physicist who, with Walter Heitler, devised the first quantum mechanical treatment of the hydrogen molecule, while working with Erwin Schrödinger at the University of Zurich. In a seminal paper (1927), they developed a wave equation for the hydrogen molecule with which it was possible to calculate approximate values of the molecule's ionization potential, heat of dissociation, and other constants. These predicted values were reasonably consistent with empirical values obtained by spectroscopic and chemical means. This theory of the chemical binding of homopolar molecules is considered one of the most important advances in modern chemistry. The approach is later called the valence-bond theory. *TIS

1995 John Lighton Synge (March 23, 1897–March 30, 1995) was an Irish mathematician and physicist. Synge made outstanding contributions to different fields of work including classical mechanics, general mechanics and geometrical optics, gas dynamics, hydrodynamics, elasticity, electrical networks, mathematical methods, differential geometry, and Einstein's theory of relativity. He studied an extensive range of mathematical physics problems, but his best known work revolved around using geometrical methods in general relativity.
He was one of the first physicists to seriously study the interior of a black hole, and is sometimes credited with anticipating the discovery of the structure of the Schwarzschild vacuum (a black hole).
He also created the game of Vish in which players compete to find circularity (vicious circles) in dictionary definitions. *Wik

2000 George Keith Batchelor FRS (8 March 1920 – 30 March 2000) was an Australian applied mathematician and fluid dynamicist. He was for many years the Professor of Applied Mathematics in the University of Cambridge, and was founding head of the Department of Applied Mathematics and Theoretical Physics (DAMTP). In 1956 he founded the influential Journal of Fluid Mechanics which he edited for some forty years. Prior to Cambridge he studied in Melbourne High School.
As an applied mathematician (and for some years at Cambridge a co-worker with Sir Geoffrey Taylor in the field of turbulent flow), he was a keen advocate of the need for physical understanding and sound experimental basis.
His An Introduction to Fluid Dynamics (CUP, 1967) is still considered a classic of the subject, and has been re-issued in the Cambridge Mathematical Library series, following strong current demand. Unusual for an 'elementary' textbook of that era, it presented a treatment in which the properties of a real viscous fluid were fully emphasized. He was elected a Foreign Honorary Member of the American Academy of Arts and Sciences in 1959.*Wik

2010 Jaime Alfonso Escalante Gutierrez (December 31, 1930 — March 30, 2010) was a Bolivian educator well-known for teaching students calculus from 1974 to 1991 at Garfield High School, East Los Angeles, California. Escalante was the subject of the 1988 film Stand and Deliver, in which he is portrayed by Edward James Olmos.*Wik



Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Wednesday, 29 March 2017

On This Day in Math - March 29



von Mädler Map of Moon, *www.RareMaps.com


Natural selection is a mechanism for generating an exceedingly high degree of improbability.
~R. A. Fisher

The 88th day of the year; 882 = 7744, it is one of only 5 numbers known whose square has no isolated digits. (Can you find the others?) [Thanks to Danny Whittaker @nemoyatpeace for a correction on this.]

There are only 88 narcissistic numbers  in base ten, (an n-digit number that is the sum of the nth power of its digits, 153=13 + 53 + 33

88 is also a chance to introduce a new word (new for me).  88 is strobogrammatic, a number that is the same when it is rotated 180o about its center... 69 is another example. If they make a different number when rotated, they are called invertible (109 becomes 601 for example). *Prime Curios
 

And with millions (billions?) of stars in the sky, did you ever wonder how many constellations there are?  Well, according to the Internationals Astronomical Union, there are 88.  
Currently, 14 men and women, 9 birds, two insects, 19 land animals, 10 water creatures, two centaurs, one head of hair, a serpent, a dragon, a flying horse, a river and 29 inanimate objects are represented in the night sky (the total comes to more than 88 because some constellations include more than one creature.)
And if you chat with Chinese friends, the cool way to say bye-bye is with 88, from Mandarin for 88, "bā ba". 

Not too far from my home near Possum Trot, Ky, there is a little place called Eighty-eight, Kentucky. One strory of the naming (there could be as many as 88 of them) is that the town was named in 1860 by Dabnie Nunnally, the community's first postmaster. He had little faith in the legibility of his handwriting, and thought that using numbers would solve the problem. He then reached into his pocket and came up with 88 cents.
In the 1948 presidential election, the community reported 88 votes for Truman and 88 votes for Dewey, which earned it a spot in Ripley's Believe It or Not.


And expanding the "88 is strobogrammatic" theme, INDER JEET TANEJA came up with this beautiful magic square with a constant of 88 that was used in a stamp series in Macao in 2014 and 2015. This image shows the reflections both horizontally and vertically, as well as the 180 degree rotation, each is a magic square.

The stamps had denominations of 1 through 9 pataca and when  two sheets were  printed you could do your own Luo Shu magic square with the denominations. The Luo Shu itself was featured on the 12 pataca stamp.




EVENTS
1796 Gauss achieved the construction of the 17-gon and a week later he would obtain his first proof of the quadratic reciprocity law. These two accomplishments mark the emergence from the ingenious manipulations of his youth, to the polished proofs of the mature mathematician. *Merzbach, An Early Version of Guass' Disquisitiones Arithmeticae, Mathematical Perspectives Academic Press 1981

first image obtained by NASA’s Dawn spacecraft .
In 1807, Vesta 4, the only asteroid visible to the naked eye, thus the brightest on record, was first observed by the amateur astronomer Heinrich Wilhelm Olbers from Bremen. Vesta is a main belt asteroid with a diameter of 525-km and a rotation period of 5.34 hours. Pictures taken by the Hubble Space Telescope in 1995 show Vesta's complex surface, with a geology similar to that of terrestrial worlds - such as Earth or Mars - a surprisingly diverse world with an exposed mantle, ancient lava flows and impact basins. Though no bigger than the state of Arizona, it once had a molten interior. This contradicts conventional ideas that asteroids essentially are cold, rocky fragments left behind from the early days of planetary formation. *TIS Since the discovery of Ceres in 1801,  and the asteroid Pallas in 1802, he had corresponded and became close friends with Gauss.  For that reason he allowed Gauss to name the new "planet". 

1933 Italy issued the world’s first postage stamp portraying Galileo. [Scott #D16] *VFR
Galileo Galilei (1564–1642) made his first appearance on this stamp in 1933 for use in pneumatic postal systems (hence the wording “Posta Pneumatica” on the stamp). Pneumatic post involved placing letters in canisters which were then shot along pipes by compressed air from one Post Office to another. Pneumatic postal systems were set up in several European and American cities, including Rome, Naples, and Milan. Italy was the only country to issue stamps specifically for pneumatic postal use. Two of the designs showed Galileo – this one and a modified version with different face value and colour issued in 1945. The portrait is based on one by Justus Sustermans painted in 1636 when Galileo was aged 72. *Ian Ridpath, World's Oldest Astro Stamps page.

1989 Pixar Wins Academy Award for "Tin Toy":
Pixar wins an Academy Award for "Tin Toy," the first entirely computer-animated work to win in the best animated short film category. Pixar, now a division of Disney, continued its success with a string of shorts and the first entirely computer-animated feature-length film, the best-selling "Toy Story." *CHM

2012 Buzz Lightyear that flew in space joins Smithsonian collection. Launched May 31, 2008, aboard the space shuttle Discovery with mission STS-124 and returned on Discovery 15 months later with STS-128, the 12-inch action figure is the longest-serving toy in space. Disney Parks partnered with NASA to send Buzz Lightyear to the International Space Station and create interactive games, educational worksheets and special messages encouraging students to pursue careers in science, technology, engineering and mathematics (STEM). The action figure will go on display in the museum’s "Moving Beyond Earth" gallery in the summer. The Toy Story character became part of the National Air and Space Museum’s popular culture collection. *http://airandspace.si.edu [I still have a Buzz Lightyear toy on my book case given to me by some students because I used to use his trademark quote in (my very questionable) Latin, "ad infinitum, et ultra." ]


BIRTHS
1794 Johann Heinrich von Mädler (29 May 1794, 14 Mar 1874 at age 79) German astronomer who (with Wilhelm Beer) published the most complete map of the Moon of the time, Mappa Selenographica, 4 vol. (1834-36). It was the first lunar map to be divided into quadrants, and it remained unsurpassed in its detail until J.F. Julius Schmidt's map of 1878. Mädler and Beer also published the first systematic chart of the surface features of the planet Mars (1830). *TIS


1825 Francesco Faà di Bruno (29 March 1825–27 March 1888) was an Italian mathematician and priest, born at Alessandria. He was of noble birth, and held, at one time, the rank of captain-of-staff in the Sardinian Army. He is the eponym of Faà di Bruno's formula. In 1988 he was beatified by Pope John Paul II. Today, he is best known for Faà di Bruno's formula on derivatives of composite functions, although it is now certain that the priority in its discovery and use is of Louis François Antoine Arbogast: Faà di Bruno should be only credited for the determinant form of this formula. However, his work is mainly related to elimination theory and to the theory of elliptic functions.
He was the author of about forty original articles published in the "Journal de Mathématiques" (edited by Joseph Liouville), Crelle's Journal, "American Journal of Mathematics" (Johns Hopkins University), "Annali di Tortolini", "Les Mondes", "Comptes rendus de l'Académie des sciences", etc.*Wik

1830 Thomas Bond Sprague (29 March 1830 in London, England - 29 Nov 1920 in Edinburgh, Scotland) studied at Cambridge and went on to become the most important actuary of the late 19th Century. He wrote more than 100 papers including many in the Proceedings of the EMS. *SAU

1873 Tullio Levi-Civita (29 Mar 1873, 29 Dec 1941) Italian mathematician who was one of the founders of absolute differential calculus (tensor analysis) which had applications to the theory of relativity. In 1887, he published a famous paper in which he developed the calculus of tensors. In 1900 he published, jointly with Ricci, the theory of tensors Méthodes de calcul differential absolu et leures applications in a form which was used by Einstein 15 years later. Weyl also used Levi-Civita's ideas to produce a unified theory of gravitation and electromagnetism. In addition to the important contributions his work made in the theory of relativity, Levi-Civita produced a series of papers treating elegantly the problem of a static gravitational field. *TIS

1890 Sir Harold Spencer Jones (29 Mar 1890, 3 Nov 1960) English astronomer who was 10th astronomer royal of England (1933–55). His work was devoted to fundamental positional astronomy. While HM Astronomer at the Cape of Good Hope, he worked on poper motions and parallaxes. Later he showed that small residuals in the apparent motions of the planets are due to the irregular rotation of the earth. He led in the worldwide effort to determine the distance to the sun by triangulating the distance of the asteroid Eros when it passed near the earth in 1930-31. Spencer Jones also improved timekeeping and knowledge of the Earth’s rotation. After WW II he supervised the move of the Royal Observatory to Herstmonceux, where it was renamed the Royal Greenwich Observatory.*TIS

1893 Jason John Nassau (29 March 1893 in Smyrna, (now Izmir) Turkey - 11 May 1965 in Cleveland, Ohio, USA) was an American astronomer.
He performed his doctoral studies at Syracuse, and gained his Ph.D. mathematics in 1920. (His thesis was Some Theorems in Alternants.) He then became an assistant professor at the Case Institute of Technology in 1921, teaching astronomy. He continued to instruct at that institution, becoming the University's first chair of astronomy from 1924 until 1959 and chairman of the graduate division from 1936 until 1940. After 1959 he was professor emeritus.
From 1924 until 1959 he was also the director of the Case Western Reserve University (CWRU) Warner and Swasey Observatory in Cleveland, Ohio. He was a pioneer in the study of galactic structure. He also discovered a new star cluster, co-discovered 2 novae in 1961, and developed a technique of studying the distribution of red (M-class or cooler) stars.*Wik

1896 Wilhelm Friedrich Ackermann (29 March 1896 – 24 December 1962) was a German mathematician best known for the Ackermann function, an important example in the theory of computation.*Wik

1912 Martin Eichler (29 March 1912 – 7 October 1992) was a German number theorist. He received his Ph.D. from the Martin Luther University of Halle-Wittenberg in 1936.
Eichler once stated that there were five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms. He is linked with Goro Shimura in the development of a method to construct elliptic curves from certain modular forms. The converse notion that every elliptic curve has a corresponding modular form would later be the key to the proof of Fermat's last theorem.*Wik

1912 Caius Jacob (29 March 1912 , Arad - 6 February 1992 , Bucharest ) was a Romanian mathematician and member of the Romanian Academy. He made ​​contributions in the fields of fluid mechanics and mathematical analysis , in particular vigilance in plane movements of incompressible fluids, speeds of movement at subsonic and supersonic , approximate solutions in gas dynamics and the old problem of potential theory. His most important publishing was Mathematical introduction to the mechanics of fluids. *Wik

1941 Joseph Hooton Taylor, Jr. (March 29, 1941, ) is an American astrophysicist and Nobel Prize in Physics laureate for his discovery with Russell Alan Hulse of a "new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." *Wi

DEATHS
1772 Emanuel Swedenborg (29 Jan 1688; 29 Mar 1772) Swedish scientist, philosopher and theologian. While young, he studied mathematics and the natural sciences in England and Europe. From Swedenborg's inventive and mechanical genius came his method of finding terrestrial longitude by the Moon, new methods of constructing docks and even tentative suggestions for the submarine and the airplane. Back in Sweden, he started (1715) that country's first scientific journal, Daedalus Hyperboreus. His book on algebra was the first in the Swedish language, and in 1721 he published a work on chemistry and physics. Swedenborg devoted 30 years to improving Sweden's metal-mining industries, while still publishing on cosmology, corpuscular philosophy, mathematics, and human sensory perceptions. *TIS

1806 John Thomas Graves (4 December 1806, Dublin, Ireland–29 March 1870, Cheltenham, England) was an Irish jurist and mathematician. He was a friend of William Rowan Hamilton, and is credited both with inspiring Hamilton to discover the quaternions and with personally discovering the octonions, which he called the octaves. He was the brother of both the mathematician Charles Graves and the writer and clergyman Robert Perceval Graves.
In his twentieth year (1826) Graves engaged in researches on the exponential function and the complex logarithm; they were printed in the Philosophical Transactions for 1829 under the title An Attempt to Rectify the Inaccuracy of some Logarithmic Formulæ. M. Vincent of Lille claimed to have arrived in 1825 at similar results, which, however, were not published by him till 1832. The conclusions announced by Graves were not at first accepted by George Peacock, who referred to them in his Report on Algebra, nor by Sir John Herschel. Graves communicated to the British Association in 1834 (Report for that year) on his discovery, and in the same report is a supporting paper by Hamilton, On Conjugate Functions or Algebraic Couples, as tending to illustrate generally the Doctrine of Imaginary Quantities, and as confirming the Results of Mr. Graves respecting the existence of Two independent Integers in the complete expression of an Imaginary Logarithm. It was an anticipation, as far as publication was concerned, of an extended memoir, which had been read by Hamilton before the Royal Irish Academy on 24 November 1833, On Conjugate Functions or Algebraic Couples, and subsequently published in the seventeenth volume of the Transactions of the Royal Irish Academy. To this memoir were prefixed A Preliminary and Elementary Essay on Algebra as the Science of Pure Time, and some General Introductory Remarks. In the concluding paragraphs of each of these three papers Hamilton acknowledges that it was "in reflecting on the important symbolical results of Mr. Graves respecting imaginary logarithms, and in attempting to explain to himself the theoretical meaning of those remarkable symbolisms", that he was conducted to "the theory of conjugate functions, which, leading on to a theory of triplets and sets of moments, steps, and numbers" were foundational for his own work, culminating in the discovery of quaternions.
For many years Graves and Hamilton maintained a correspondence on the interpretation of imaginaries. In 1843 Hamilton discovered the quaternions, and it was to Graves that he made on 17 October his first written communication of the discovery. In his preface to the Lectures on Quaternions and in a prefatory letter to a communication to the Philosophical Magazine for December 1844 are acknowledgments of his indebtedness to Graves for stimulus and suggestion. After the discovery of quaternions, Graves employed himself in extending to eight squares Euler's four-square identity, and went on to conceive a theory of "octaves" (now called octonions) analogous to Hamilton's theory of quaternions, introducing four imaginaries additional to Hamilton's i, j and k, and conforming to "the law of the modulus".
Graves devised also a pure-triplet system founded on the roots of positive unity, simultaneously with his brother Charles Graves, the bishop of Limerick. He afterwards stimulated Hamilton to the study of polyhedra, and was told of the discovery of the icosian calculus. *Wik

1873 Francesco Zantedeschi (born 1797, 29 Mar 1873) Italian priest and physicist, who published papers (1829, 1830) on the production of electric currents in closed circuits by the approach and withdrawal of a magnet, preceding Faraday's classic experiment of 1831. Studying the solar spectrum, Zantedeschi was among the first to recognize the marked absorption by the atmosphere of the red, yellow, and green light. Though not confirmed, he also thought he detected a magnetic action on steel needles by ultra-violet light (1838), at least suspecting a connection between light and magnetism many years before Clerk-Maxwell's announcement (1867) of the electromagnetic theory of light. He experimented on the repulsion of flames by a strong magnetic field.*TIS

1912 Robert Falcon Scott, (6 June 1868 - 29 March 1912) was a Royal Navy officer and explorer who led two expeditions to the Antarctic regions: the Discovery Expedition, 1901–04, and the ill-fated Terra Nova Expedition, 1910–13. During this second venture, Scott led a party of five which reached the South Pole on 17 January 1912, only to find that they had been preceded by Roald Amundsen's Norwegian expedition. On their return journey, Scott and his four comrades all died from a combination of exhaustion, starvation and extreme cold.  *Wik

1944 Grace Chisholm Young (née Chisholm; 15 March 1868 – 29 March 1944) was an English mathematician. She was educated at Girton College, Cambridge, England and continued her studies at Göttingen University in Germany. Her early writings were published under the name of her husband, William Henry Young, and they collaborated on mathematical work throughout their lives. For her work on calculus (1914–16), she was awarded the Gamble Prize.
Her son, Laurence Chisholm Young, was also a prominent mathematician. One of her living granddaughters, Sylvia Wiegand (daughter of Laurence), is also a mathematician (and a past president of the Association for Women in Mathematics.)*Wik

1980 William Gemmell Cochran (15 July 1909, Rutherglen – 29 March 1980, Orleans, Massachusetts)In 1934 R A Fisher left Rothamsted Experimental Station to accept the Galton chair at University College, London and Frank Yates became head at Rothamsted. Cochran was offered the vacant post but he had not finished his doctoral course at Cambridge. Yates later wrote:-
... it was a measure of good sense that he accepted my argument that a PhD, even from Cambridge, was little evidence of research ability, and that Cambridge had at that time little to teach him in statistics that could not be much better learnt from practical work in a research institute.
Cochran accepted the post at Rothamsted where he worked for 5 years on experimental designs and sample survey techniques. During this time he worked closely with Yates. At this time he also had the chance to work with Fisher who was a frequent visitor at Rothamsted.
Cochran visited Iowa Statistical Laboratory in 1938, then he accepted a statistics post there in 1939. His task was to develop the graduate programe in statistics within the Mathematics Department. In 1943 he joined Wilks research team at Princeton.
At Princeton he was involved in war work examining probabilities of hits in naval warfare. By 1945 he was working on bombing raid strategies.
He joined the newly created North Carolina Institute of Statistics in 1946, again to develop the graduate programe in statistics. From 1949 until 1957 he was at Johns Hopkins University in the chair of biostatistics. Here he was more involved in medical applications of statistics rather than the agricultural application he had studied earlier.
From 1957 until he retired in 1976 Cochran was at Harvard. His initial task was to help set up a statistics department, something which he had a great deal of experience with by this time. He had almost become a professional at starting statistics within universities in the USA. *SAU

1983 Sir Maurice George Kendall, FBA (6 September 1907 – 29 March 1983) was a British statistician, widely known for his contribution to statistics. The Kendall tau rank correlation is named after him.*Wik He was involved in developing one of the first mechanical devices to produce (pseudo-) random digits, eventually leading to a 100,000-random-digit set commonly used until RAND's (once well-known) "A Million Random Digits With 100,000 Normal Deviates" in 1955.
Kendall was Professor of Statistics at the London School of Economics from 1949 to 1961. His main work in statistics involved k-statistics, time series, and rank-correlation methods, including developing the Kendall's tau stat, which eventually led to a monograph on Rank Correlation in 1948. He was also involved in several large sample-survey projects. For many, what Kendall is best known for is his set of books titled The Advanced Theory of Statistics (ATS), with Volume I first appearing in 1943 and Volume II in 1946. Kendall later completed a
rewriting of ATS, which appeared in three volumes in 1966, which were updated by collaborator Alan Stuart and Keith Ord after Kendall's death, appearing now as "Kendall's Advanced Theory of Statistics". *David Bee

1999 Boris A. Kordemsky ( 23 May 1907 – 29 March, 1999) was a Russian mathematician and educator. He is best known for his popular science books and mathematical puzzles. He is the author of over 70 books and popular mathematics articles.
Kordemsky received Ph.D. in education in 1956 and taught mathematics at several Moscow colleges.
He is probably the best-selling author of math puzzle books in the history of the world. Just one of his books, Matematicheskaya Smekalka (or, Mathematical Quick-Wits), sold more than a million copies in the Soviet Union/Russia alone, and it has been translated into many languages. By exciting millions of people in mathematical problems over five decades, he influenced generations of solvers both at home and abroad. *Age of Puzzles, by Will Shortz and Serhiy Grabarchuk (mostly)


1908 John Bardeen (23 May 1908; 30 Jan 1991 at age 82) American physicist who was cowinner of the Nobel Prize for Physics in both 1956 and 1972. He shared the 1956 prize with William B. Shockley and Walter H. Brattain for their joint invention of the transistor. With Leon N. Cooper and John R. Schrieffer he was awarded the 1972 prize for development of the theory of superconductors, usually called the BCS-theory (after the initials of their names). *TIS



Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell




Tuesday, 28 March 2017

On This Day in Math - March 28



*George W. Hart, Sculpture


 `The introduction of the cipher 0 or the group concept was general nonsense too, and mathematics was more or less stagnating for thousands of years because nobody was around to take such childish steps ...'.
Alexandre Grothendieck in a letter in 1982 to Ronald Brown

The 87th day of the year; the sum of the squares of the first four primes is 87. \(87 = 2^2 + 3^2 + 5^2 + 7^2 \)

87 = 3 * 29, \(87^2 + 3^2 + 29^2 and 87^2 - 3^2 - 29^2 \)are both primes

Among Australian cricket players, it seems, 87 is an unlucky score and is referred to as "the devil's number", supposedly because it is 13 runs short of 100.

And 87 is, of course, the number of years between the signing of the U.S. Declaration of Independence and the Battle of Gettysburg, immortalized in Abraham Lincoln's Gettysburg Address with the phrase "fourscore and seven years ago..."


EVENTS

In 1747, the fascination with electricity upon reaching the American colonies was the subject of Benjamin Franklin's first of the famous series of letters in which he described his experiments on electricity to Peter Collinson, Esq., of London. He thanked Collison for his “kind present of an electric tube with directions for using it” with which he and others did electrical experiments. “For my own part I never was before engaged in any study that so totally engrossed my attention and my time as this has lately done; for what with making experiments when I can be alone, and repeating them to my friends and acquaintances, who, from the novelty of the thing, come continually in crowds to see them, I have, during some months past, had little leisure for anything else.”*TIS

1764 In a second trial of John Harrison's marine timekeeper, his son William departed for Barbados aboard the Tartar. As with the first trial, William used H4 to predict the ship's arrival at Madeira with extraordinary accuracy. The watch's error was computed to be 39.2 seconds over a voyage of 47 days, three times better than required to win the maximum reward of £20,000. *Royal Museum Greenwich

1802 Olbers, while observing the constellation Virgo, had observed a "star" of the seventh-magnitude not found on the star charts. Over the following week he would observe the motion and determined that it was a planet. In early April he sent the data to Gauss to compute the orbit. On the 18th of April, Gauss computed the orbit in only three hours, placing the orbit between Mars and Jupitor. Olbers named the new planetoid Pallas, and predicted there would be others found in the same area. John Herschel dismissed this speculation as "dreams in which astronomers... indulge" but over 1000 such planetoids have been observed. *Dunnington, Gray, & Dohse; Carl Friedrich Gauss: Titan of Science


1809 Gauss finished work on his Theoria Motus. It explains his methods of computing planetary orbits using least squares. [Springer’s 1985 Statistics Calendar] *VFR

In 1946, the Census Bureau and the National Bureau of Standards met to discuss the purchase of a computer. The agencies agreed to buy UNIVAC, the world's first general all-purpose business computer, from Presper Eckert and John Mauchly for a mere $225,000. Unfortunately, UNIVAC cost far more than that to develop. Eckert and Mauchly's venture floundered as the company continued to build and program UNIVACs for far less than the development cost. Eventually, the company was purchased by Remington Rand. *TIS

1949 The phrase "Big Bang" is created. Shortly after 6:30 am GMT on BBC's The Third Program, Fred Hoyle used the term in describing theories that contrasted with his own "continuous creation" model for the Universe. "...based on a theory that all the matter in the universe was created in one big bang ... ". *Mario Livio, Brilliant Blunders


1959 Germany issued a stamp commemorating the 400th anniversary of the death of Adam Riese [Scott #799] *VFR I understand that the German expression "nach Adam Riese", is still used today. It means "according to Adam Ries" and it is used in saying something is exactly correct.

In 2006, a substantial "lost" book of manuscripts by Robert Hooke in his own handwriting was bought for the Royal Society by donations of nearly £1 million. The book was just minutes before going on the auction block when a last-minute purchase agreement was made and kept the precious document in Britain. Hooke is now often overlooked, except for his law of elasticity, although in his time, he was a prolific English scientist and contributed greatly to planning the rebuilding of London after the Great Fire of 1666. The document of more than 520 pages of manuscripts included the minutes of the Royal Society from 1661-82. It had been found in a cupboard in a private house by an antiques expert there to value other items. *TIS

 
BIRTHS
 
1847 Gyula Farkas (28 March 1847 in Sárosd, Fejér County, Hungary - 27 Dec 1930 in Pestszentlorinc, Hungary) He is remembered for Farkas theorem which is used in linear programming and also for his work on linear inequalities. In 1881 Gyula Farkas published a paper on Farkas Bolyai's iterative solution to the trinomial equation, making a careful study of the convergence of the algorithm. In a paper published three years later, Farkas examined the convergence of more general iterative methods. He also made major contributions to applied mathematics and physics, particularly in the areas of mechanical equilibrium, thermodynamics, and electrodynamics.*SAU

1923 Israel Nathan Herstein (March 28, 1923, Lublin, Poland – February 9, 1988, Chicago, Illinois) was a mathematician, appointed as professor at the University of Chicago in 1951. He worked on a variety of areas of algebra, including ring theory, with over 100 research papers and over a dozen books.
He is known for his lucid style of writing, as exemplified by the classic and widely influential Topics in Algebra, an undergraduate introduction to abstract algebra that was published in 1964, which dominated the field for 20 years. A more advanced classic text is his Noncommutative Rings in the Carus Mathematical Monographs series. His primary interest was in noncommutative ring theory, but he also wrote papers on finite groups, linear algebra, and mathematical economics.*Wik

1928 Alexander Grothendieck (28 Mar 1928-13 November 2014) In 1966 he won a Fields Medal for his work in algebraic geometry. He introduced the idea of K-theory and revolutionized homological algebra. Within algebraic geometry itself, his theory of schemes is used in technical work. His generalization of the classical Riemann-Roch theorem started the study of algebraic and topological K-theory. His construction of new cohomology theories has left consequences for algebraic number theory, algebraic topology, and representation theory. His creation of topos theory has appeared in set theory and logic.
One of his results is the discovery of the first arithmetic Weil cohomology theory: the ℓ-adic étale cohomology. This result opened the way for a proof of the Weil conjectures, ultimately completed by his student Pierre Deligne. To this day, ℓ-adic cohomology remains a fundamental tool for number theorists, with applications to the Langlands program.
Grothendieck influenced generations of mathematicians after his departure from mathematics. His emphasis on the role of universal properties brought category theory into the mainstream as an organizing principle. His notion of abelian category is now the basic object of study in homological algebra. His conjectural theory of motives has been behind modern developments in algebraic K-theory, motivic homotopy theory, and motivic integration. *Wik

DEATHS
1678 Claude François Milliet Dechales (1621 in Chambéry, France - 28 March 1678 in Turin, Italy) Dechales is best remembered for Cursus seu mundus mathematicus published in Lyons in 1674, a complete course of mathematics. Topics covered in this wide ranging work included practical geometry, mechanics, statics, magnetism and optics as well as topics outwith the usual topics of mathematics such as geography, architecture, astronomy, natural philosophy and music. In 1678 he published in Lausanne his edition of Euclid, The Elements of Euclid Explained in a New but Most Easy Method: Together with the Use of Every Proposition through All Parts of the Mathematics, written in French by That Most Excellent Mathematician, F Claude Francis Milliet Dechales of the Society of Jesus. This work covers Books 1 to 6, together with Books 11 and 12, of Euclid's Elements. A second edition was published in 1683, then an edition revised by Ozanam was published in Paris in 1753. An English translation was published in London by M Gillyflower and W Freeman, the translation being by Reeve Williams. A second edition of this English translation appeared in 1696. Schaap writes, "Dechales's separate edition of Euclid, long a favourite in France and elsewhere on the Continent, never became popular in England." *SAU

1794 Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet (17 September 1743 – 28 March 1794), known as Nicolas de Condorcet, was a French philosopher, mathematician, and early political scientist whose Condorcet method in voting tally selects the candidate who would beat each of the other candidates in a run-off election. Unlike many of his contemporaries, he advocated a liberal economy, free and equal public education, constitutionalism, and equal rights for women and people of all races. His ideas and writings were said to embody the ideals of the Age of Enlightenment and rationalism, and remain influential to this day. He died a mysterious death in prison after a period of being a fugitive from French Revolutionary​ authorities.*Wik
Condorcet committed suicide by poisoning while in jail so that the republican terrorists could not take him to Paris. *VFR (The St Andrews site has the date of his death one day later.)

1840 Simon Antoine Jean Lhuilier (24 April 1750 in Geneva, Switzerland - 28 March 1840 in Geneva, Switzerland) His work on Euler's polyhedra formula, and exceptions to that formula, were important in the development of topology. Lhuilier also corrected Euler's solution of the Königsberg bridge problem. He also wrote four important articles on probability during the years 1796 and 1797. His most famous pupil was Charles-François Sturm who studied under Lhuilier during the last few years of his career in Geneva. *SAU

1850 Bernt Michael Holmboe (23 March 1795 – 28 March 1850) was a Norwegian mathematician. Holmboe was hired as a mathematics teacher at the Christiania Cathedral School in 1818, where he met the future renowned mathematician Niels Henrik Abel. Holmboe's lasting impact on mathematics worldwide has been said to be his tutoring of Abel, both in school and privately. The two became friends and remained so until Abel's early death. Holmboe moved to the Royal Frederick University in 1826, where he worked until his own death in 1850.
Holmboe's significant impact on mathematics in the fledgling Norway was his textbook in two volumes for secondary schools. It was widely used, but faced competition from Christopher Hansteen's alternative offering, sparking what may have been Norway's first debate about school textbooks. *Wik

1874 Peter Andreas Hansen (8 Dec 1795; 28 Mar 1874) Danish astronomer whose most important work was the improvement of the theories and tables of the orbits of the principal bodies in the solar system. At Altona observatory he assisted in measuring the arc of meridian (1821). He became the director (1825) of Seeberg observatory, which was removed to Gotha in a new observatory built for him (1857). He worked on theoretical geodesy, optics, and the theory of probability. The work in celestial mechanics for which he is best known are his theories of motion for comets, minor planets, moon and his lunar tables (1857) which were in use until 1923. He published his lunar theory in Fundamenta ("Foundation") in 1838, and Darlegung ("Explanation") in 1862-64.*TIS

1950 Ernst David Hellinger (0 Sept 1883 in Striegau, Silesia, Germany (now Strzegom, Poland) - 28 March 1950 in Chicago, Illinois, USA) introduced a new type of integral: the Hellinger integral . Jointly with Hilbert he produced an important theory of forms. From 1907 to 1909 he was an assistant at Göttingen and, during this time, he ".. edited Hilbert's lecture notes and Felix Klein's influential Elementarmathematik vom höheren Standpunkte aus (Berlin, 1925) which was translated into English (New York, 1932). Years later the story is told that,
Shortly after his arrival at Northwestern, one of the professors in describing Northwest's mathematics program to him remarked that in the honours course Felix Klein's 'Elementary mathematics from an advanced standpoint' was used as a text and "perhaps Hellinger was familiar with it". At this Hellinger ... replied "familiar with it, I wrote it!".
*SAU




Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Monday, 27 March 2017

On This Day in Math - March 27

Charles Minard's Napoleon's March, 


Modern science, as training the mind to an exact and impartial analysis of facts, is an education specially fitted to promote citizenship.
~Karl Pearson

The 86th day of the year; 86 is conjectured to be the largest number n such that 2n (in decimal) doesn't contain a 0. *Tanya Khovanova, Number Gossip

The 86th prime is 443, and 4433 = 86,938,307. There is no other two digit n, such that the nth prime starts with n.

86 is the sum of four consecutive integers, 86= 20 + 21 + 22 + 23
and of four consecutive squares, 86= 32 + 42 + 52 + 62

The multiplicative persistence of a number is the number of times the iteration of finding the product of the digits takes to reach a one digit number. For 86, with persistence of three, we produce 8*6= 48, 4*8 = 32, and 3*2 = 6.... and 48+32+6 = 86. (how frequently does that occur?)

EVENTS

In 1827, Charles Darwin, aged 18, submitted his first report of an original scientific discovery to the Plinian Society in Edinburgh, Scotland. Darwin had discovered several things about the biology of tiny marine organisms found along the Scottish coast. *TIS

1921 On the morning of Easter Sunday, Otto Loewi awoke with the memory he had had an important dream during the night and written down some notes, but when he tried to retrieve them, the writing was hopelessly illegible. After trying to recall the dream all day, he retired early in the evening and eventually the dream came again. The dream was about a way to determine if transmissions between nerve cells was chemical or not. He immediately got out of bed and went to his laboratory. With a single experiment on a frog's heart he confirmed his own thesis of seventeen years before, that the transfer was indeed a chemical process. *Michael Brooks, Free Radicals (pg 24-25)


1958 The first national high-school mathematics competition in the U.S. was held. Since 1983 it has been known as the American High School Mathematics Examination (AHSME). [The College Mathematics Journal, 16 (1985), p. 331] *VFR

1976 20-Year Old Bill Gates Gives Opening Address to Hobbyists:
Bill Gates gives the opening address at the First Annual World Altair Computer Convention in Albuquerque, N.M. MITS, the company that developed the Altair, had set up shop in the southwestern city to develop its kit computer, which was a hit among hobbyists after it graced the cover of "Popular Mechanics" magazine. Gates, then a 20-year-old erstwhile Harvard student, had helped develop the form of BASIC sold with the Altair. *CHM



BIRTHS
1781 Charles Joseph Minard (27 Mar 1781; 24 Oct 1870 at age 89) French civil engineer who made significant contributions to the graphical representations of data. His best-known work, Carte figurative des pertes successives en hommes de l'Armee Français dans la campagne de Russe 1812-1813, dramatically displays the number of Napoleon's soldiers by the width of an ever-reducing band drawn across a map from France to Moscow. At its origin, a wide band shows 442,000 soldiers left France, narrowing across several hundred miles to 100,000 men reaching Moscow. With a parallel temperature graph displaying deadly frigid Russian winter temperatures along the way, the band shrinks during the retreat to a pathetic thin trickle of 10,000 survivors returning to their homeland. *TIS

1824 Johann Wilhelm Hittorf (27 Mar 1824, 28 Nov 1914) German physicist who was a pioneer in electrochemical research. His early investigations were on the allotropes (different physical forms) of phosphorus and selenium. He was the first to compute the electricity- carrying capacity of charged atoms and molecules (ions), an important factor in understanding electrochemical reactions. He investigated the migration of ions during electrolysis (1853-59), developed expressions for and measured transport numbers. In 1869, he published his laws governing the migration of ions. For his studies of electrical phenomena in rarefied gases, the Hittorf tube has been named for him. Hittorf determined a number of properties of cathode rays, including (before Crookes) the deflection of the rays by a magnet. *TIS

1845 Wilhelm Conrad Röntgen (27 Mar 1845 - 10 Feb 1923 at age 77) was a German physicist who discovered the highly penetrating form of radiation that became known as X-rays on 8 Nov 1895. He received the first Nobel Prize for Physics (1901), “in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him.” This high-energy radiation, though first called Röngen rays, became known as X-rays. His discovery initiated revolutionary improvements in making medical diagnoses and enabled many new advances in modern physics. *TIS "In 1901 he became the first physicist to receive a Nobel prize." *VFR

1855 Sir Alfred Ewing (27 Mar 1855, 7 Jan 1935) was a Scottish physicist who discovered and named hysteresis (1881), the resistance of magnetic materials to change in magnetic force. Ewing was born and educated in Dundee and studied engineering on a scholarship at Edinburgh University. He helped Sir William Thomson, later Lord Kelvin in a cable laying project. In 1878 he became professor of Mechanical Engineering and Physics at Tokyo University, where he devised instruments for measuring earthquakes. In 1903 he moved to the Admiralty as head of education and training, where during WW I, he and his staff took on the task of deciphering coded messages. *TIS

1857 Karl Pearson (27 Mar 1857; 27 Apr 1936 at age 79) English mathematician who was one of the founders of modern statistics. His lectures as professor of geometry evolved into The Grammar of Science (1892), his most widely read book and a classic in the philosophy of science. Stimulated by the evolutionary writings of Francis Galton and a personal friendship with Walter F.R. Weldon, Pearson became immersed in the problem of applying statistics to biological problems of heredity and evolution. The methods he developed are essential to every serious application of statistics. From 1893 to 1912 he wrote a series of 18 papers entitled Mathematical Contributions to the Theory of Evolution, which contained much of his most valuable work, including the chi-square test of statistical significance. *TIS

1897 Douglas Rayner Hartree PhD, FRS (27 March 1897 – 12 February 1958) was an English mathematician and physicist most famous for the development of numerical analysis and its application to the Hartree-Fock equations of atomic physics and the construction of the meccano differential analyser. *Wik

1905 László Kalmár (27 March 1905 in Edde (N of Kaposvar), Hungary - 2 Aug 1976 in Mátraháza, Hungary) worked on mathematical logic and theoretical computer science. He was ackowledged as the leader of Hungarian mathematical logic. *SAU

1928 Alexander Grothendieck In 1966 he won a Fields Medal for his work in algebraic geometry. He introduced the idea of K-theory and revolutionized homological algebra. *VFR

DEATHS


1850 Wilhelm Beer (4 Jan 1797, 27 Mar 1850 at age 53) German banker and amateur astronomer who owned a fine Fraunhofer refractor which he used in his own a private observatory. He worked jointly with Johann Heinrich von Mädler, to produce the first large-scale moon map to be based on precise micrometric measurements. Their four-year effort was published as Mappa Selenographica (1836). This fine lithographed map provided the most complete details of the Moon's surface in the first half of the 19th century. It was the first lunar map divided in quadrants, and recorded the Moon's face in great detail detail. It was drawn to a scale of scale of just over 38 inches to the moon's diameter. Mädler originated a convention for naming minor craters with Roman letters appended to the name of the nearest large crater (ex. Egede A,B, and C).

1888 Francesco Faà di Bruno (29 March 1825–27 March 1888) was an Italian mathematician and priest, born at Alessandria. He was of noble birth, and held, at one time, the rank of captain-of-staff in the Sardinian Army. He is the eponym of Faà di Bruno's formula. In 1988 he was beatified by Pope John Paul II. Today, he is best known for Faà di Bruno's formula on derivatives of composite functions, although it is now certain that the priority in its discovery and use is of Louis François Antoine Arbogast: Faà di Bruno should be only credited for the determinant form of this formula. However, his work is mainly related to elimination theory and to the theory of elliptic functions.
He was the author of about forty original articles published in the "Journal de Mathématiques" (edited by Joseph Liouville), Crelle's Journal, "American Journal of Mathematics" (Johns Hopkins University), "Annali di Tortolini", "Les Mondes", "Comptes rendus de l'Académie des sciences", etc.*Wik

1923 Sir James Dewar (20 Sep 1842; 27 Mar 1923) British chemist and physicist. Blurring the line between physics and chemistry, he advanced the research frontier in several fields at the turn of the century, and gave dazzling lectures. His study of low-temperature phenomena entailed making an insulating double-walled flask of his own design by creating a vacuum between the two silvered layers of steel or glass (1892). This Dewar flask that has been named for him led to the domestic Thermos bottle. In June 1897, The Scientific American reported that "Dewar has just succeeded in liquefying fluorine gas at a temperature of -185 degrees C." He obtained liquid hydrogen in 1898. Dewar also invented cordite, the first smokeless powder.*TIS

1925 Carl Gottfried Neumann,(7 May 1832 in Königsberg, Germany (now Kaliningrad, Russia) - 27 March 1925 in Leipzig, Germany) He worked on a wide range of topics in applied mathematics such as mathematical physics, potential theory and electrodynamics. He also made important pure mathematical contributions. He studied the order of connectivity of Riemann surfaces.
During the 1860s Neumann wrote papers on the Dirichlet principle and the 'logarithmic potential', a term he coined. In 1890 Émile Picard used Neumann's results to develop his method of successive approximation which he used to give existence proofs for the solutions of partial differential equations.*SAU

1929 Samuil Shatunovsky (25 March 1859 – 27 March 1929) was a Russian mathematician. focused on several topics in mathematical analysis and algebra, such as group theory, number theory and geometry. Independently from Hilbert, he developed a similar axiomatic theory and applied it in geometry, algebra, Galois theory and analysis.[1] However, most of his activity was devoted to teaching at Odessa University and writing associated books and study materials.*Wik

1972  Maurits Cornelius Escher (17 June 1898 in Leeuwarden, Netherlands - 27 March 1972 in Laren, Netherlands) an artist whose works have included a considerable mathematical content. He is known for his often mathematically inspired woodcuts, lithographs, and mezzotints. These feature impossible constructions, explorations of infinity, architecture, and tessellations. *Wik




Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell